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Abstract

In the examination of handwritten items, the questioned document (QD) examiner follows a sequence
of steps in many of which there is a degree of uncertainty to be resolved by experience and power of recall.
Some examples of of such decisions are: determining type/comparability, whether there is an adequate
quantity of information and determining whether a set of characteristics is individualizing or representative
of a class. Statistical models can play a significant role in assisting the QD examiner in dealing with
uncertainty. In particular, the need for a statistical description of handwriting characteristics has long
been felt. Efforts have been limited due to lack of efficient methods for collecting the data, computational
problems of dealing with the very large number of combinatorial possibilities and the lack of clear direction
for use of such results by the QD examiner. This research developed new statistical methods and software
tools to: (i) extract samples of commonly encountered letter forms from the handwriting of typical writers,
(ii) determine characteristics that would be used by QD examiners to describe common letter forms, (iii)
have QD examiners enter perceived characteristics of the samples with a user interface, (iv) determine the
frequency of occurrence of combinations of handwriting characteristics, (v) use those frequencies to construct
a probabilistic model while handling the combinatorial possibilities and sample requirements, and (vi) use
such models to infer the probability of characteristics to determine whether they are individualizing and in
forming an opinion. Previously collected samples of extended handwriting, whose writers were representative
of the United States population, were used to extract snippets of common letter combinations. From these
scanned images the words th and and were extracted. The word snippets of each writer were presented to QD
examiners who entered values for several characteristics using an interactive tool developed for the purpose;
the characteristics depended on writing type: cursive or hand-printed. From this data the frequencies of
the characteristics and their combinations were evaluated. Since the combinations of characteristics is very
large, exact statistical models are infeasible. Instead, probabilistic graphical models are used to model the
joint distribution. Both directed and undirected graphical models were learnt from data using algorithms
that use independence tests between pairs of variables and a global measure of the goodness. Methods for
inferring useful probabilities from the models were developed, e.g., rarity as a measure of individualizing
characteristics, and the probability of random correspondence of the observed sample among n writers.
Using these methods, the probabilities of nearly 1, 500 writing styles of and were determined and tabulated.
An indication of how the developed techniques can be incorporated into the work-flow of the QD examiner
is given.
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Chapter 1

Executive Summary

The most common task in Questioned Document (QD) examination deals with handwritten items. The
task involves performing several decisions such as determining the type and comparability of the known and
questioned items, determining whether there is an adequate amount of information and whether the observed
characteristics are representative of a class or are individualizing. These decisions are usually based entirely
on the examiner’s experience and power of recall. The availability of statistical models in each of these steps
offers the promise for providing a scientific basis for the choices made and the opinions expressed.

The project demonstrated the construction of probabilistic models for several of the steps in hand-
writing examination, with a particular focus on handwriting characteristics. Frequencies of characteristics,
determined from samples collected over a representative population, are useful to determine a probability
distribution from which several useful inferences can be made, e.g., whether observed characteristics are
individualizing and in quantifying opinion.

The goal was to: (i) develop methods to extract samples of commonly encountered letter forms from
extended handwriting samples of typical writers in the United States, (ii) prepare the appropriate format to
present the samples to QD examiners who would then enter perceived characteristics with a user interface,
(iii) determine the frequency of occurrence of combinations of handwriting characteristics, (iv) use those
frequencies to construct a probabilistic model without the method being overwhelmed by the combinatorial
possibilities and sample requirements, (v) develop methods to infer the probability of evidence from the
model, and (vi) indicate where such methods can be used in the QD examiner’s work-flow for examining
handwritten items. The project tasks are divided into four parts: data preparation, model construction,
inference and QD work-flow.

The first part was to prepare the data set of handwriting characteristics in a form suitable for statistical
analysis. Previously created collections of handwriting samples that are representative of the United States
population were used. The most common letter combinations in the English language were determined.
Since the handwriting samples are of extended writing, the letter combinations of interest were isolated in
them and the corresponding image snippets were extracted. QD examiners determined the characteristics
appropriate for the letter combinations, with the characteristics being dependent on whether the writing was
cursive or of hand-print. The samples of each writer were presented in an interactive manner to QD examiners
who entered the characteristics that they observed using a pull-down menu. In particular, characteristics for
the word and were determined considering the cursive and hand-print cases.

The second part began with the construction of probability models from the data. Since the frequencies of
all combinations of characteristics cannot be exhaustively determined, probabilistic graphical models (PGMs)
were used to model the joint distributions. The appropriate model is learnt from the data so that the joint
distribution of the characteristics is captured by several conditional frequencies of the characteristics. New
algorithms for constructing directed PGMs (Bayesian networks) and undirected PGMs (Markov networks)
were proposed and their use demonstrated with handwriting data.

The third part consisted of methods of inference using the models. Methods were developed to determine:
the probability of given evidence, probability of random correspondence (PRC), conditional PRC associated
with a given sample and the probability of finding a similar one within tolerance in a database of given size.
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The probabilities of nearly 1, 500 writing styles of and were determined and tabulated in decreasing order of
probability. Also, a method for evaluating the probability of identification, when evidence is compared with
a known, is described. It involves taking into account two factors, one based on distance (or similarity) and
the other on rarity (which is the reciprocal of probability).

The final part of the project is to indicate as to how QD examiners can incorporate the results of such
analysis into their work- flow. They are used in choosing individualizing characteristics to compare between
two handwritten items and in making a statement in the testimony as to how likely it is that a randomly
selected person would have the characteristics observed in the evidence.

The project benefitted from the advise of several QD examiners, particularly Kirsten Singer of the
Department of Veteran’s Administration, Traci Moran of the Financial Management Service and Lisa Hanson
of the Minnesota Criminal Apprehension Laboratory. The views expressed here are of the author alone and
do not reflect the opinions of the QD examiners nor of the Department of Justice.
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Chapter 2

Research narrative

2.1 Introduction

In the forensic sciences evidence is usually quantified by means of several characteristics. Frequencies of such
characteristics from samples collected over a representative population are useful both in the investigative
and prosecution phases of a case. Knowing the frequencies of characteristics allows the calculation of the
rarity of a piece of evidence and thereby quantify its probative value. In the field of DNA identification, the
evidence is characterized by a set of alleles. Knowing allele frequencies allows one to make a statement such
as “the chance that a randomly selected person would have the same DNA pattern as that of the sample
source and the suspect is 1 in 24,000,000”.

The importance of quantitative methods to characterize confidences in pattern-based forensic identifica-
tion has been underscored by various court rulings and the recent report of the National Academy of Sciences
[54]. Among the forensic sciences dealing with visual patterns is Questioned Document (QD) examination.
An important component of QD examination is the analysis of handwritten items. The goal of such analysis
is typically to compare a QD with known writing. The comparisons typically use several characteristics
of handwriting. The aim of this project was to develop techniques to provide a statistical basis for the
characteristics that document examiners use.

Since the examination of handwritten items involves human determination of characteristics, QD ex-
aminers have to create data sets of characteristics which can then be analyzed statistically. The resulting
probabilities will be useful in identifying rare formations (known as individualizing characteristics) and in
providing an opinion regarding the correspondence between evidence and known. This research is a first
step towards developing the tools and methods necessary for the ambitious goal of creating a statistical
foundation for the handwriting facet of QD examination.

The remainder of this report is organized as follows. Section 2.1.1 describes the terminology and procedure
for examining handwritten items as described by SWGDOC (Scientific Working Group for Forensic Document
Examination) and published as ASTM standards. Section 2.1.2 defines the problem statement for this
project. Some relevant literature is described in Section 2.1.3 although most references are given in the the
narrative. The project rationale is summarized in Section 2.1.4.

The discussion of research methods is divided into four parts: data preparation (Section 2.2), statistical
model construction (Section 2.3), statistical inference (Section 2.4) and incorporating the methods into the
QD examiner’s work-flow (Section 2.5.1).

There are six appendices as follows. The source of handwriting data is described in Appendix 1. A
software tool for extracting snippets of data from extended handwriting is in Appendix 2. A comparison
of marginal probabilities of th with earlier work is in Appendix 3. Samples of and used in constructing
statistical models is in Appendix 4. A statistical method for determining handwriting type is in Appendix
5. A method for mapping a likelihood ratio into an opinion scale is described in Appendix 6.
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!

Figure 2.1: Samples of a handwritten word from eight different writers showing between-writer and within-writer
variability. The word “referred” occurs in the third paragraph of the CEDAR letter described in Appendix 1.

2.1.1 Current practice

QD examination involves the comparison and analysis of documents, printing and writing instruments in
order to identify or eliminate persons as the source. Handwriting comparison is based on the premise that
no two persons write the same way, while considering the fact that the writing of each person has its own
variabilities[58, 39]. Individuals write differently both because they were taught differently, e.g, Palmer and
D’Nelian methods which are called class-characteristics, and due to individual habits known as individualizing
characteristics. Examples of such variations are seen in Figure 2.1.

QD examiners specify handwriting characteristics (features) based on years of training [39]. QD exam-
iner’s judgements are often based entirely on the examiner’s experience and power of recall. Statistical data
concerning frequency of occurrence of forms and combinations would offer promise for providing a scientific
basis for their opinions. QD examiners tend to assign probative values to specific handwriting characteristics
and their combinations. These characteristics are termed the seven S’s, viz., size, slant, spacing, shading,
system, speed, strokes [32].

The terminology and procedure for the examination of handwritten items by QD examiners are given in
the ASTM documents Standard Guide for Examination of Handwritten Items [7] and Standard Terminology
for Expressing Conclusion of Forensic Document Examiners [8] which we summarize below. This terminology
is also used in the discussion below.

A. Questioned Document (QD) terminology

• absent character: present in one and not in the other

• character: language symbol: letter, numeral, punctuation

• characteristic: a feature, quality, attribute or property

• class characteristics: properties common to a group

• comparable: same types, also contemporaneous, instruments

• distorted: unnatural: disguise, simulation, involuntary

• handwritten item; cursive, hand-print or signatures

• individualizing characteristics: unique to individual

• item: object or material on which observations are made

• known (K): of established origin in matter investigated

• natural writing: without attempt to control/alter execution

9

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



2.1. INTRODUCTION CHAPTER 2. RESEARCH NARRATIVE

• questioned (Q): source of question, e.g., common with K

• range of variation: deviations within a writer’s repetitions

• significant difference: individualizing charac. outside range

• significant similarity: common individualizing characteristic

• sufficient quantity: volume required o assess writers’ range

• type of writing: hand-print, cursive, numerals, signatures

• variation: deviations introduced by internal (illness, medication) and external (writing conditions,
instrument)

B. Workflow

The workflow of examining handwritten items is given below; it summarizes steps in the ASTM document
Standard Guide for Examination of Handwritten Items [7].

1. Determine if comparison is Q v. Q, K v. K, or Q v. K. The first when there are no suspects or to
determine number of writers. The second to determine variation range. The third to confirm/repudiate
writership.

2. Determine whether Q and K are original or copies. If not original, evaluate quality of best reproduction
and check whether significant details are reproduced with sufficient clarity. If not discontinue procedure.

3. Determine whether Q and K are distorted.

4. Determine the type of writing. If more than one, separate into groups of single type.

5. Check for internal inconsistencies in groups. If inconsistencies suggest multiple writers, divide groups
into consistent subgroups. For K, if there are unresolved inconsistencies, stop procedure and report
accordingly.

6. Determine range of variation for each group/subgroup.

7. Detect presence/absence of individualizing characteristics.

8. Evaluate comparability of Q and K, e.g., both cursive or both hand-print. If not comparable request
new K and repeat.

9. Compare bodies of writing.

10. Compare and analyze differences and similarities to form conclusion. The recommended nine-point
terminology for expressing FDE conclusion is [8]:

(a) Identified as same

(b) Highly probable same

(c) Probably did

(d) Indications did

(e) No conclusion

(f) Indications did not

(g) Probably did not

(h) Highly probable did not

(i) Identified as Elimination
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Figure 2.2: Work Flow of Forensic Handwriting Examination. In steps 7 and 10 probabilistic analysis is useful.
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The work-flow is presented in the form of a flowchart in Figure 2.2.
The work-flow has at least two points in it where probabilistic analysis can play a useful role. In Step 7,

the QD examiner selects individualizing characteristics. Such characteristics are those that are rare within
the population, i.e., the letter/word formations have a low probability of occurrence. The second is in the last
step of forming an opinion (Step 10), which is essentially a discretized probability of identification/exclusion.

C. Statistical Characterization

The role of probabilities of handwriting characteristics was recognized over a hundred years ago [58]. However
their use in court testimony is not currently feasible due to the complexity of the problem. There have been
very few efforts to characterize the statistical characteristics of such features, a notable one being [51]. On
the other hand there have been efforts to compute features automatically– but the features tend to be
gross approximations of the characteristics employed[60, 14] or the features do not correspond to human
determined characteristics at all[74, 12].While these automated methods perform well in objective tests they
do not lend support to the document examiner in testimony. Much of automatic handwriting recognition is
concerned with determining the identity of a given letter or combination of letters by learning from example
data about different forms encountered. On the other hand the goal of forensic handwriting examination
is to determine as to how unusual a given structure or formation is so that it can be used to identify the
writer. While an unusual, or rare, handwriting formation is central to identifying the writer, it is of little
consequence and even considered as noise in recognition.

Several types of probabilistic queries can be useful in the examination of handwriting evidence: (i) the
probability of observed evidence, (ii) the probability of a particular feature observed in the evidence, (iii) the
probability of finding the evidence in a representative database of handwriting exemplars. The probability
of evidence can be used together with the probability of similarity to obtain a strength of opinion. As an
example, in the field of DNA evidence a probabilistic statement can be made regarding the rarity of the
observed profile by multiplying the probabilities of the observed allele frequencies. The strength of opinion
can also be determined by a likelihood ratio[10, 86, 89]. In the case of fingerprints a similar statement can
be made about the rarity of a particular minutiae pattern [81] and the strength of opinion by a likelihood
ratio[76, 57, 56].

2.1.2 Statement of the problem

The goal is to develop methods, algorithms and software to make it possible to construct probabilistic
models of handwriting characteristics so that the models can be used to answer queries of interest to the
QD examiner. There are four parts. The first, to prepare the necessary data, the second to construct
probability models, the third to perform useful inferences in answering queries and the fourth to indicate its
use. In data preparation, the focus is on what letter formations are of interest, how to obtain them and how
to assign characteristic values to them. Choice of probability models is important since all combinations
cannot be exhaustively determined. Inference concerns answering probabilistic queries. An example query
is the probability of a given set of characteristics. Another is the probability of random correspondence with
one of n individuals. The end goal of the project is that the results of such analysis could be incorporated
into the QD work-flow, e.g., in the choice of individualizing characteristics, in making a statement in the
testimony as to how likely it is that a randomly selected person would have those same characteristics. These
are further expanded as follows:

1. Data Preparation

(a) Obtain samples of handwriting representative of the population of interest

(b) Determine the letter combinations to be analyzed from language statistics

(c) Have QD examiners specify characteristics specific to cursive writing and hand-print

(d) Extract snippets of the desired letter combinations from the handwriting samples

(e) Develop a software tool to assign characteristic values to extracted samples
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(f) Have QD examiners assign characteristic values to samples using the tool

(g) From the entered data create files for statistical analysis

2. Statistical Model Construction

(a) Determine the type of statistical model to be used, e.g., directed or undirected PGM

(b) Determine the structure and parameters of the model from the data

3. Inference

(a) Determine the queries of interest, e.g., probability of finding the evidence among n writers

(b) Develop inference procedures to answer queries of interest from the model

4. Incorporation into QD workflow

(a) Formalize QD examiner’s work-flow for handwritten items

(b) Indicate in work-flow where methods can be incorporated

2.1.3 Literature review

The examination of handwritten items is the most common task in QD examination, also known as forensic
document examination (FDE). The examiner has to deal with various aspects of documents, with writership
being the central issue. Procedures for handwriting FDE have been described over the course of a century[58,
21, 33, 36, 39]. The requirements for handwriting examination include: (i) known exemplars are comparable
to the disputed text, (ii) adequate in amount and (iii) timely or contemporaneous; abbreviated as CAT
[35]. We discuss here the literature in the following five areas: (i) type/comparability, (ii) adequacy, (iii)
handwriting characteristics, (iv) statistical analysis of characteristics and (v) QD work-flow for handwritten
items.

A. Type and Comparability

Handwritten items may be all uppercase, all lower case or a hybrid of hand-print and cursive writing. The
question of how the type of writing (hand-printed or cursive) affects results has arisen in the courts, e.g.,
some United States federal district court judges referred to a lack of information regarding proficiency in
identifying writers of hand-printed documents. In the case of US v. Jeffrey H. Feingold1, error rates in [41]
on analyzing handwriting were specifically questioned regarding their applicability to hand printing. In that
case, the court called a months-long break so that the results could be separated. The study demonstrated the
superior proficiency of document examiners compared with laypeople in identifying writers of hand-printed
writing.

Hand-printed writing poses some unique challenges and has been specifically explored for decades [20].
It has been noted in [6] that many writers are “less habituated to printing than to cursive writing,” and “in
cursive script, connecting strokes within and between letters constitute a critical feature for identification”.
Also [6] describes the importance of this problem as “handprinting is often the script of choice for writers
of anonymous or disguised messages, apparently because many believe that handprinting is less identifiable
than cursive script.”

The above issues and the proliferation of hand-printing in recent years emphasizes the need for the type
of writing to be considered in statistical analysis.

19th Cir, April 2004, CR 02-0976-PHX-SMM
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B. Adequacy

In [35] it is mentioned that “adequacy refers to the number of exemplars needed to allow the FDE to
determine the writer’s range of variation. It is not possible to set a definite number of known exemplars.
Factors such as the length of the questioned text, the writer’s cooperation in providing comparable exemplars,
complexity of letter formations, and natural writing variation affect the number of known exemplars deemed
adequate for the comparison to the disputed material. For example 20 to 30 repetitions of the letterforms
in a robbery note may be adequate for examination in one case, while 2 or 3 pages of dictated text of a
disputed 5-page letter may be adequate for that particular examination.”

The amount of information available can be naturally incorporated into statistical models of identification.
In CEDAR-FOX the opinion scale factors-in the amount of information while mapping a log-likelihood ratio
to an opinion scale [40] .

C. Handwriting Characteristics

We distinguish between two types of handwriting characteristics: those used by QD examiners in their
analysis and those automatically computed.

1. QD Examiner determined characteristics. There are several books over the years describing class- and
individualizing-characteristics of handwriting [36, 39]. Class-characteristics pertain to the writing char-
acteristics of a group of individuals, e.g., those trained in a certain way. Individualizing characteristics
pertain to the habits of an individual writer.

A study of frequencies of QD examiner characteristics of the letter pair th was done in 1977 by
Muehlberger [51] and colleagues. They specified six characteristics for th without considering whether
the writing was cursive or hand-printed, as is customary today. Based on the writing of 200 individ-
uals they provided marginal distributions of the six variables and joint distributions of a few pairs of
variables. No effort was made to specify the joint distribution of all the six variables together.

Since writing itself changes over the years, e.g., there is more hand-print than cursive writing today,
new such evaluations are needed on contemporary handwriting samples. During our previous work
on the individuality of handwriting we collected handwriting samples of 1500 individuals. Individuals
who wrote the samples are stratified by gender and age and selected to be representative of the United
States population. A detailed description of the data set is given in [73] and also summarized in Ap-
pendix 2. These samples are useful to obtain statistics of QD examiner characteristics.

2. Automatically determined characteristics. Several computational tools for FDE have been developed
over the last two decades by the pattern analysis and machine intelligence community [63, 75]. Specific
tools include FISH[34], CEDAR-FOX[73, 77], and FLASH-ID[66]. Such tools, which have the capabil-
ity of extracting handwriting features for the purpose of side-by-side comparison, have been used to
establish scientific foundations such as the individuality of handwriting [73, 66] and quantifying the
strength of evidence as a likelihood ratio [74]. We summarize characteristics used in two systems and
give a comparison:

• In the CEDAR-FOX system [74] characteristics include those specified by QD examiners and those
that can be computed easily [78, 46]. These features have been tested extensively and found to
work quite well. The system uses 13 macro features characterizing the entire document and micro
features for characters used in the comparison. The number of characters used when comparing
a pair of documents is variable since it depends on the content and recognition results on the
documents, e.g., if there were N occurrences of character a in the first document and M occur-
rences of character a in the second document, then that results in N ×M comparisons resulting
in N ×M features for the character a alone. The distributions of similarity of characteristics
under the same writer and different writer scenarios are determined from the CEDAR data set
thereby allowing a likelihood ratio to be computed between given evidence (handwriting sample)
and known writing.
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• A research group at George Mason University and Gannon Technologies, under funding from
the FBI, developed the system known as Forensic Language-independent Analysis System for
Handwriting IDentification (FLASH ID) [67]. The feature extraction method involves extracting
graphs of characters from word segments, building a graph feature vector, and identifying the
unknown character graph by matching against a database containing a set of known character
graphs. The graphs known as isocodes are built considering nodes as the ends and cross-points
of curves and the curves as the edges. The distribution of the isocodes represents the document
which is then compared to the distribution of the known document using the Kullback-Liebler
distance. It is clear that these features are quite different from those used by document examiners.

• CEDAR-FOX has a number of user interfaces for interaction as well for understanding the system’s
decision. For instance the transcript mapping function allows the user to associate characters
with correct recognition decisions before a comparison is made. CEDAR-FOX can function when
the questioned document has very little writing since it relies on past handwriting to obtain its
statistics. FLASH-ID needs a significant amount of material in the questioned document in order
for it to be able to compute a distribution of iso-codes. Finally, CEDAR-FOX can be downloaded
freely for evaluation purposes.

It should be noted that the present research is about human QD examiners specifying the characteristics
rather than using automatically determined characteristics. Thus we begin with QD examiner determined
characteristics and focus only on the statistical inference done by computational methods.

D. Statistical Analysis of Characteristics

Two types of statistical analysis are pertinent to QD analysis. The first relates to the characteristics of a
given document and the second to the comparison of two documents.

1. Probability of Characteristics. The evaluation of frequency of evidence was considered in [51]. In par-
ticular samples of th were obtained from 200 writers. The statistical analysis was limited to the extent
of providing several conditional probability tables. The complexity of evaluating joint probabilities was
not considered. However it was a good starting point for further research in this area.

2. Probability of Identification. Forensic identification concerns whether observed evidence arose from a
known source. The probabilistic approach is to determine the likelihood ratio positive (LR+) [28, 1, 85,
56, 70] whose numerator is the joint probability of the evidence and source under the null, or prosecution,
hypothesis that the evidence arises from the source and the denominator is the joint probability under
the alternate, or defense, hypothesis that the evidence does not arise from the object. The probability
of identification is readily obtained from LR+ as discussed in Section 2.4.2. Determining the joint
probability has high data requirements, e.g., if evidence and object are both characterized by n binary
features, the joint distribution requires 22n probabilities or parameters. Even for small n this requires
extremely large data sets for estimating parameters. Furthermore in forensic applications data sets are
usually small making the approach infeasible. There are two solutions:

(a) Distance Method: A solution is to use the probability of distance, or similarity, between the
evidence and known instead of the joint probability [56, 76]. The distance between features of
ensemble of pairs of same and different writer documents are modeled parametrically in CEDAR-
FOX using gamma/Gaussian density functions. If psi denotes the density function modeling
the distance between same writer document pairs for the ith feature and pdi denotes the density
function modeling the distance between different writer pairs for the ith feature, then the likelihood

ratio between two documents with distances di between the features, is given by LR =
∏
i
psi (di)

pdi (di)
.

(b) Rarity Method: The distance based method, which has a constant number of parameters, is
simple to compute but there is a severe loss of information in going from a high-dimensional joint
probability space to a one-dimensional distance space. This research considers a third method
based on a result of Lindley [48] for univariate Gaussian samples which combines the probability of
distance with the probability of the mean of evidence and object, called rarity. Computing rarity
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exactly has the complexity of 2n still, for which probabilistic graphical models (e.g. Bayesian
networks) and mixture models are used to further simplify the computation.

E. QD Work-flow

The work-flow for the examination of handwritten items by QD examiners are given in the SWGDOC
document Standard Guide for Examination of Handwritten Items [7]. This forms a good starting point for
the inclusion of computational methods.

Handwriting examination practice continues to be a largely manual intensive effort based on FDE training.
The situation is not dissimilar to expert systems where automation is only a part of the process, e.g., medical
diagnosis, where the stakes are high. Thus there is a need to systematize human procedures so that they
can be better understood, validated and improved. Such procedure specification has been referred to as
computational thinking [90]. The need for validation is also vital to the forensic sciences [54]. Applying
computational thinking to forensic procedures is computational forensics[71].

2.1.4 Rationale for the research

In nearly every step of the QD examination process there is uncertainty. For instance in determining
type/comparability and whether there is an adequate quantity of information. Also in the critical step of
determining whether a set of characteristics is individualizing or representative of a class. Thus statistical
models can play a significant role is assisting the QD examiner. In particular, the need for a statistical
description of handwriting characteristics has long been felt, but it has so far not been possible due to lack
of efficient methods for collecting the data, computational problems of dealing the very large number of
combinatorial possibilities and lack of clear direction for use of such results by the QD examiner.

Existing methods to extract handwriting characteristics automatically have fallen short, since: (i) they
are not as discriminative as expert human perception, and (ii) since they do not correspond to human
intuition they do not lend support the testimony of the QD examiner. The focus of this effort is quite
different from previous methods involving automation in that it involves a cooperative effort between the
QD examiner who determines the values of the characteristics and automated methods are only used to build
sophisticated probabilistic models.

The goal is to demonstrate how the characteristics of handwritten letter combinations can be captured,
and how their statistics can be useful for QD investigation and testimony. This involves data preparation,
statistical model construction, statistical inference and incorporation of methods into the QD work-flow.

2.2 Methods: Data Preparation

Preparation of the data for subsequent statistical analysis consisted of the following tasks:

1. Handwriting Samples: Determine the collection of handwriting samples from which frequencies will be
extracted

2. Letter Combinations: Select the letter combinations for which statistical characteristics will be deter-
mined

3. Characteristics: Determine for each letter combination the set of characteristics that are used by QD
examiners

4. Extraction of snippets of letter combination images

5. User Interface: Preparing a user interface for data entry

6. Ground-truthing the letter combinations by QD examiners

Details of each of the six steps are given below.
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Table 2.1: Most frequently occurring letter pairs (bigrams) with expected occurrences per 2000 letters. The
bigrams are not permitted to span across consecutive words.

Bigram Count Bigram Count Bigram Count
th 50 at 25 st 20
er 40 en 25 io 18
on 39 es 25 le 18
an 38 of 25 is 17
re 38 or 25 ou 17
he 33 nt 24 ar 16
in 31 ea 22 as 16
ed 30 ti 22 de 16
nd 30 to 22 rt 16
ha 26 it 20 ve 16

(a) (b)

Figure 2.3: Samples of handwritten th of two writers showing two different writing styles as well as within-writer
variability.

2.2.1 Handwriting Samples

The handwriting samples used in this project are derived from the CEDAR dataset consists of writing samples
of over 1,500 individuals representing the United States. The population was stratified over gender, age,
ethnicity, education, and handedness. Each individual copied a document that contains all possible letters
in the English language, including many common letter pairs such as ”th”, ”an”, ”he” and ”nd”. Each
document is scanned at a resolution of 300 pixels per inch. A description of this data is given in Appendix
1.

2.2.2 Letter combinations

The choice of letter combinations was based on frequency in the English language. Their availability in the
handwriting samples was also a consideration. The longer the word string, the higher is the discriminatory
power of the formation. Adequacy of handwriting for comparison is relevant for QD examination. Thus
we decided to consider pairs and triples of letters rather than a single letter since it is likely to be more
individualistic. The most common letter bigrams in the English language are listed in Table 2.1.

The most frequently occurring letter pair is th which has been studied in the QD literature [51]. Thus
we decided to begin our analysis with th whose examples are shown in Figure 2.3. No distinction was made
between cursive and hand-print as was done subsequently with the letter triple and which includes both the
fourth most frequently occurring letter pair an and the ninth most frequent pair nd. There are nine instances
of th in the CEDAR letter, five of which are initial, three in the middle (or end) of a word and one with
an uppercase “T”. There are five instances of and in the CEDAR letter, all of which are individual words
rather than part of words. Since there are 3 samples of writing of each page per writer, it potentially gives
us 27 samples of “th” and fifteen samples of “and” per individual. Some examples of cursively written and
of a single writer are given in Figure 2.4. Examples of hand-printed and of a writer are in Figure 2.5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2.4: Samples of cursively written and of a single writer. Using the characteristics listed in Table 2.3 (a) this
writing is encoded as 101122012

.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

Figure 2.5: Samples of hand-printed and of a single writer. Using the characteristics listed in Table 2.3 (b) this
writing is encoded as 010110112

.
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Table 2.2: Characteristics of the th combination: six variables and their values [51].
R = Height Re-
lationship of t to
h

L = Shape of Loop
of h

A = Shape of
Arch of h

C = Height of
Cross on t staff

B = Baseline of
h

S = Shape of t

r0= t shorter than
h

l0 = retraced a0 = rounded
arch

c0 = upper half of
staff

b0 = slanting up-
ward

s0 = tented

r1 = t even with h l1 = curved right side
and straight left side

a1 = pointed c1 = lower half of
staff

b1 = slanting
downward

s1 = single stroke

r2 = t taller than
h

l2 = curved left side
and straight right
side

a2 =no set pat-
tern

c2 = above staff b2 = baseline even s2 = looped

r3 = no set pat-
tern

l3 = both sides
curved

c3 = no fixed pat-
tern

b3 = no set pat-
tern

s3 = closed

l4 = no fixed pattern s4 = mixture of
shapes

2.2.3 Characteristics

The essential starting point for the statistical study was for QD examiners to provide a list of characteristics
for letter combinations. It was necessary for them to specify for each letter combination, such as for those
listed in Table 2.1, the characteristics that they would use for discriminating between writers. Some of this
work previously done. For instance, the characteristics for the most frequent letter combination th were
provided in [51] which are reproduced in Table 2.2; perhaps because it was an early experiment, [51] did not
differentiate between handprint and cursive.

In [51] the writing of th is characterized by a set of six features X = {R,L,A,C,B, S} where R takes
on four possible values indicated by lower-case letters superscripted as r0, r1, r2, r3 and so on. The value is
assigned to a particular writing sample, which can consist of several instances of th, as shown in Figures 2.3
and 2.6. For instance the three samples in Figure 2.3(a) will be jointly encoded as r1, l0, a0, c3, b1, s2 and the
samples in Figure 2.3(b) as r2, l2, a0, c1, b0, s2.

For the purpose of this project QD examiners provided a characterization for the word (letter triple) and.
The characteristics vary depending on whether the writing is cursive and hand-print as shown in Table 2.3.
This is also consistent with the comparability issue in Step 8 of the QD work-flow (Figure 2.2).

2.2.4 Extraction of Snippets

Since we are dealing with a large number of handwriting samples (over 4,500 pages) an automatic tool
is useful to extract the letter combinations of interest. They were extracted largely automatically from
the scanned handwriting images using the transcript mapping function of CEDAR-FOX [37]. Given the
typed transcript of the handwritten document, this function maps words to images, as shown in Appendix
3 (Section 2.12). Since some of the mapping may be erroneous, there is provision for manually correcting
the results. This process provides the location of letter combination of interest within a page of handwriting
from which the image snippets can be extracted.

2.2.5 User Interface

An interface was constructed for ground-truthing image snippets. The graphics interface for truthing the th
samples is given in Figure 2.6. The display of image snippets is on the left consisting of all snippets found
in the document. Each of the features has a pull-down menu for values that can be entered by the user.

In the case of and the interface has two choices: cursive and hand-print, one of which the user must
select. The screen for the cursive choice is given in Figure 2.7, and the screen for the hand-print choice is
given in Figure 2.8. Handwritten QD examination requires that the letter forms compared in two samples
be of the same type [36]. The characteristics depend on whether the writing is cursive or hand-print. Thus
the user interface has to facilitate classifying the input into whether the writing is cursive or hand-print.
One solution is to automatically perform this classification; which will allow the appropriate characteristics
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Table 2.3: Characteristics of and as Specified by Document Examiners.

(a) Cursive

Initial
stroke of
forma-
tion of a
(x1)

Formation
of staff
of a (x2)

Number
of arches
of n(x3)

Shape of
arches of
n (x4)

Location
of mid-
point of
n(x5)

Formation
of staff
of d (x6)

Formation
of initial
stroke of
d (x7)

Formation
of ter-
minal
stroke of
d (x8)

Symbol
in place
of the
word
and (x9)

Right of
staff (0)

Tented (0) One (0) Pointed
(0)

Above
baseline
(0)

Tented (0) Overhand
(0)

Curved up
(0)

Formation
(0)

Left of
staff (1)

Retraced
(1)

Two (1) Rounded
(1)

Below
baseline
(1)

Retraced
(1)

Underhand
(1)

Straight
accross
(1)

Symbol
(1)

Center of
staff (2)

Looped
(2)

No fixed
pattern
(2)

Retraced
(2)

At base-
line (2)

Looped
(2)

Straight
accross
(2)

Curved
down (2)

None (2)

No fixed
pattern
(3)

No staff
(3)

Combination
(3)

No fixed
pattern
(3)

No fixed
pattern
(3)

No fixed
pattern
(3)

No ob-
vious
ending
stroke (3)

No fixed
pattern
(4)

No fixed
pattern
(4)

No fixed
pattern
(4)

(b) handprint

Number
of
strokes
of forma-
tion of a
(x1)

Formation
of staff
of a (x2)

Number
of
strokes
of for-
mation
of n(x3)

Formation
of staff
of n (x4)

Shape of
arch of n
(x5)

Number
of
strokes
of forma-
tion of d
(x6)

Formation
of staff
of d (x7)

Initial
stroke of
d (x8)

Unusual
forma-
tion (x9)

One con-
tinuous
(0)

Tented (0) One con-
tinuous
(0)

Tented (0) Pointed
(0)

One con-
tinuous
(0)

Tented (0) Top of
staff (0)

Formation
(0)

Two
strokes
(1)

Retraced
(1)

Two
strokes
(1)

Retraced
(1)

Rounded
(1)

Two
strokes
(1)

Retraced
(1)

Bulb (1) Symbol
(1)

Three
strokes
(2)

Looped
(2)

Three
strokes
(2)

Looped
(2)

No fixed
pattern
(2)

Three
strokes
(2)

Looped
(2)

No fixed
pattern
(2)

None (2)

Upper
case (3)

No staff
(3)

Upper
case (3)

No staff
(3)

Upper
Case (3)

Single
down (3)

Undetermined
(3)

No fixed
pattern
(4)

Single line
down (4)

No fixed
pattern
(4)

No fixed
pattern
(4)

No fixed
pattern
(4)

Single up
(4)

No fixed
pattern
(5)

No fixed
pattern
(5)
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Figure 2.6: GUI for determining the features for th exemplars of a given writer: values are assigned manually using
pull-down menus for each feature.

menu to be automatically brought-up (see Appendix 5). The other is to have a user enter this information
manually. For the present, we used manual input.

When the data for a given set of images has been entered by the user, the next set of snippets is displayed.
The user can save work and resume later if necessary. The frequencies of different combinations of features
are accumulated so that different marginal and conditional probabilities can be computed from them.

2.2.6 Ground-truthing

Ground-truthing is the task of assigning values for each of the characteristics for given samples of a handwrit-
ten word. It is best done by QD examiners who are trained to observe handwriting characteristics. For the
very first test effort we undertook, the data entry for th was done by lay people (computer science students).

In the case of and the data entry interface was used by QD examiners to enter the values for the
characteristics. They first enter whether the samples are cursive or handprint. This provides the appropriate
pull-down menus for data entry.

The work-load was shared primarily between two QD examiners. A small set at the end was entered by
a third QD examiner. The end-result is a valuable resource for characterizing the distribution of and in U.S.
handwriting.
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2.3 Methods: Statistical Model Construction

Once the frequency data for handwriting characteristics is available, using methods described in Section 2.2,
the next step is to construct a statistical model. The model, in the form of a joint distribution, can have
several uses:

• The probability of a given handwritten item, say a word represented by a set of characteristics, can be
determined. This probability is a measure of the whether the characteristics belong to a class (when
the probability is high) or are individualizing (low probability).

• Marginal probabilities of individual variables, joint probabilities of pairs (or more) of variables and
conditional probabilities, which are useful to refer to characteristic(s) in isolation, can be inferred.

• Generate samples for analysis, e.g., approximate inference. While the samples generated will be in the
form of characteristic values, images can be artificially synthesized for visualization, testing, etc.

In constructing models, there are several fundamental issues to be faced. The number of combinatorial
possibilities of feature combinations increases exponentially with the number of characteristics. The number
of samples needed also increases proportionally.

2.3.1 Problem Complexity

To illustrate the complexity of constructing a joint distribution, consider the example of th whose character-
istics as given by QD examiners [51] is given in Table 2.2. Thus the writing of th is characterized by a set
of six features X = {R,L,A,C,B, S} where R takes on four possible values indicated by lower-case letters
superscripted as r0, r1, r2, r3 and so on. The value is assigned to a particular writing sample, which can
consist of several instances of th, as shown in Figures 2.3 and 2.6. For instance the three samples in Figure
2.3(a) will be jointly encoded as r1, l0, a0, c3, b1, s2 and the samples in Figure 2.3(b) as r2, l2, a0, c1, b0, s2.

In the probabilistic formulation each characteristic is considered to be a random variable. These six
variables each have multinomial distributions with 4,5,3,4,4 and 5 possible values. If we assume that the
variables are independent then the number of independent probabilities (parameters) to be estimated is
3 + 4 + 2 + 3 + 3 + 4 = 19. On the other hand if we allow all dependencies, the number of parameters needed
is 4× 5× 3× 4× 4× 5− 1 = 4, 799. The complexity of joint probability distribution increases exponentially
with the number of variables. However it is unsatisfactory to assume full independence between all variables.

Consider now one of the most common words in the English language and. Characteristics for this
word specified by QD examiners is given in Table 2.3 for cursive and handprint writing. Thus the writing
of and is characterized by a set of nine features X = X1, X2, ..., X9 where Xi takes up to 5 values for
the cursive dataset and 6 values for the handprint dataset. Each sample with a set of feature values can
represent several instances of and. In the probabilistic formulation each feature is considered to be a random
variable. The nine features each have multinomial distributions with 4, 5, 3, 5, 4, 4, 4, 5 and 3 possible
values for cursive data and 5, 6, 5, 5, 3, 5, 6, 4, and 3 possible values for handprint data. If we assume
that all variables are dependent on every other variable, the number of parameters needed for cursive data is
4×5×3×5×4×4×4×5×3−1 = 287, 999 and for handprint data is 5×6×5×5×3×5×6×4×3−1 = 809, 999.

Just moving from the two letter word th to a three letter word and increases the number of parameters
needed from about 5, 000 to 288, 000 or more. Given a full London letter [58], which has a dozen or more
words, it would be impossible to characterize the probability distribution with a full set of parameters.

The computational complexity and the need for samples can be managed by exploiting statistical inde-
pendencies that exist between some variables but without resorting to the assumption that all characteristics
are statistically independent of each other. Probabilistic graphical models are useful to express such inde-
pendencies [44]. We can use either directed graphical models, known as Bayesian networks, or undirected
graphical models, known as Markov networks. In the rest of this section we discuss methods to construct
both types of models.
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2.3.2 Bayesian Networks

A Bayesian network(BN) is a representation of a joint probability distribution of several random variables. It
is represented in the form of a directed acyclic graph (DAG) together with associated conditional probability
distributions. It is essentially a collection of directed dependencies (or causality) between variables.

A BN for the six variables in Table 2.2, BNth, is given in Figure 2.9(a). It incorporates causality such
as: the shape of t (S) influences the shape of h loop (L), the shape of h-arch (A) influences the baseline of h
(B), etc. Together with the conditional probability distributions (CPDs), the Bayesian network represents
the full joint distribution of the six variables. BNth factorizes the distribution of th into component CPDs
as

P (X) = P (R)P (L|S)P (A|L)P (C|S)P (B|R,A)P (S|R). (2.1)

The CPD values are derived from data obtained from the ground-truthing described previously. The number
of independent parameters needed to specify BNth is 3 + 16 + 10 + 20 + 15 + 36 = 100 which is far fewer
than 4, 799 to directly specify the distribution. The marginal distributions of the variables are in Figure
2.9(b) and the conditional probability tables (CPTs) for Eq. 2.1 are given in Figure 2.9(c-g). The method
of estimating the parameters is discussed after we introduce Bayesian Network Structure Learning.

Note that given the BN, the marginal probability of any single characteristic, or the joint probability
of any combination of characteristics can be determined. For example, if we are interested in the joint
probability P (R,L), it can be determined using the sum rule of probability as P (R,L) =

∑
A,C,B,S P (X).

Bayesian Network Structure Learning

Manually specifying causality between variables is not an easy task. Thus automatic methods are useful.
The goal of BN structure learning is to find a BN that gives the best representation of all directed dependen-
cies between variables. However it is a computationally intractable problem that is NP-complete problem.
Learning the structure of Bayesian networks (BNs) that approximate the joint distribution of a large number
of variables is an important problem in machine learning and data mining [18, 43, 44, 82].

Existing methods for BN structure learning can be divided into three types: constraint based, score
based and Bayesian model averaging methods. By viewing the BN as a representation of dependencies,
constraint based methods attempt to find a network structure that best explains dependencies. But it is
sensitive to errors in testing single dependencies [44]. Score based methods view learning as a model selection
problem; by defining a scoring function which assesses the fitness of each model, it searches for a high-scoring
network structure. As the search space is super-exponential, enumerating scores for all models is often NP-
hard. Therefore it has to resort to heuristic search. Examples are the K2 algorithm [22], and the optimized
branch and bound algorithm [26]. The third type of methods, Bayesian model averaging, make predictions
by averaging across all possible structures. But the disadvantage is that some may not have closed form.
Recently Peters et al. [61] proposed an algorithm that infers the causal structure of discrete variables using
additive noise models. It also points out that the limitation of the χ2 test on small data sets.

We use both constraints and a score. Deviance from independence between pairs of variables are con-
straints and the structure is scored using log-loss. Instead of exhaustively searching the entire solution space,
the deviances are used as guidance to search for a structure with a low log-loss. Constraints and score are
defined as follows:

1. Constraint. The chi-squared (χ2) independence test (also known as Pearson’s chi-squared test.) is used
to test for independence of two categorical variables [31, 88]. It provides a measure of deviance from
the null hypothesis of independence [44].

Let X and Y be two multinomial variables governed by distributions P (X = x) and P (Y = y).
Consider a data set D with a total of M samples, where M [x, y] is the observed count for each joint
assignment of X = x and Y = y. Given the null hypothesis that X and Y are independent, the expected
count for (x, y) is E[x, y] = M · P̂ (x) · P̂ (y) where P̂ indicates the estimate of P from D. Then the
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(a)

Val. R L A C B S
0 0.23 0.69 0.41 0.53 0.11 0.09
1 0.37 0.05 0.44 0.28 0.1 0.61
2 0.16 0.006 0.16 0.008 0.49 0.02
3 0.24 0.08 - 0.18 0.29 0.05
4 - 0.17 - - - 0.22

(b) Marginal distributions of characteristics of th

s0 s1 s2 s3 s4

r0 0.21 0.48 0.02 0.1 0.19
r1 0.04 0.68 0.04 0.05 0.2
r2 0.07 0.71 0 0.04 0.18
r3 0.05 0.57 0.02 0.04 0.31
(c) Conditional Distribution P (S|R)

a0 a1 a2

l0 0.47 0.39 0.14
l1 0.18 0.71 0.11
l2 0.67 0 0.33
l3 0.3 0.66 0.05
l4 0.27 0.42 0.31

(d) Conditional Distribution
P (A|L)

l0 l1 l2 l3 l4

s0 0.4 0.06 0 0.34 0.19
s1 0.8 0.05 0.01 0.04 0.11
s2 0.54 0.15 0 0.08 0.23
s3 0.59 0.03 0.03 0.17 0.17
s4 0.56 0.06 0 0.08 0.3
(e) Conditional Distribution P (L|S)

c0 c1 c2 c3

s0 0.85 0.06 0.02 0.06
s1 0.47 0.37 0.01 0.15
s2 0.69 0.31 0 0
s3 0.83 0.1 0 0.07
s4 0.46 0.17 0.01 0.36

(f) Conditional Distribution
P (C|S)

b0 b1 b2 b3

r0, a0 0.03 0.17 0.53 0.27
r0, a1 0.18 0.12 0.41 0.29
r0, a2 0.13 0 0.4 0.47
r1, a0 0.08 0.06 0.7 0.17
r1, a1 0.13 0.15 0.51 0.21
r1, a2 0.04 0.09 0.35 0.52
r2, a0 0.13 0.13 0.53 0.2
r2, a1 0.12 0.17 0.37 0.34
r2, a2 0.08 0.25 0.5 0.17
r3, a0 0.12 0.06 0.44 0.38
r3, a1 0.16 0.07 0.45 0.32
r3, a2 0.06 0.09 0.36 0.48

(g) Conditional Distribution P (B|R,A).

Figure 2.9: Bayesian network of th: (a) manually constructed directed graph, (b) marginal distributions,
(c)–(g) conditional probability distributions.
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deviance measure is defined by

dχ2(D) =
∑
x,y

(M [x, y]− E[x, y])
2

E[x, y]
. (2.2)

2. Score. For a BN G with n variables {X1, ..., Xn}, its log-loss on a data set D with M i.i.d samples is
the negative log-likelihood given by

s(D|G) = −
n∑
i=1

M∑
m=1

logP (xi[m]|paXi
[m]), (2.3)

where xi[m] is the value of the ith variable (characteristic) in the mth sample and paXi
[m] are the

values of all the parent variables of Xi in the mth sample.

Structure Learning Algorithm

In Algorithm 1 the pairwise deviances between all possible pairs of nodes (features) are first calculated
and stored in a set Ep in non-increasing order. Starting from a model without any edges but containing
all the vertices, one edge (xi, xj) at a time is examined to determine whether or not the edge should be
added and which direction should be used by comparing the three BNs: the BN before considering the edge
(G∗), the BN with (xi → xj) added (Gc1), and the BN with (xj → xi) added (Gc2), as shown in Fig. 2.10.
The goodness of each BN is measured by its log-loss defined in Eq. 2.3. If either edges do not decrease
the log-loss of the model or do not create a DAG, no edge is added to G. The algorithm chooses the best
model G∗ so far with the lowest s among (Gc, Gc1 , Gc2), set current graph Gc = G∗, remove (vi, vj) out of
Ep. Then it repeats the previous procedure, until all node pairs have been examined, i.e. Ep = ∅. This
process is repeated until the set Ep became empty. The parameters of Gc, Gc1 , and Gc2 are estimated using
either maximum likelihood or Bayesian approaches as described in the next section. The function isDAG(G)
returns a Boolean value indicating whether G is a directed acyclic graph (DAG).

(a) (b) (c)

Figure 2.10: Bayesian Network (BN) structure learning, where edge (x4, x5), with the next highest χ2 value is being
considered: (a) BN G∗ before considering edge (x4, x5); (b) candidate BN Gc1 with edge (x4 → x5); (c) candidate
BN Gc2 with edge (x5 → x4).

Since determining the log-loss to determine the addition of each edge takes exponential-time, while
constructing the models, only up to two parents per node was considered. As shown in Figure 2.11(a) and
2.11(b), if the new node ’b’ to be added will become the parent of node ’a’, the edge is added to our structure
as long as ’a’ has no parent or ’a’ has only a single parent. As shown in Figure 2.11(c), if ’a’ already has 2
parents ’c’ and ’d’, the new edge is not added to the graph whether or not it decreases the log loss.

Algorithm Complexity. Step 3 takes time O(n2), step 12 takes O(n2 log n) and O(n · 2d), where d is
the maximum number of parents per node, and the time required in the loop is bounded by O(n2), so the
running time is O(n2 log)).
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(a) No parents (b) One parent (c) Two parents

Figure 2.11: Heuristics of determining Structure in Algorithm BNSL

Algorithm 1 BNSL: Bayesian Network Structure Learning

1: Input: set S = {v1, ..., vn} of n random variables, training data Dr and validation data Dv
2: Output: an optimal graph G∗ = {V,E∗}
3: Compute pairwise deviations, dχ2(vi, vj)
4: Construct ordered set Ep = {(vi, vj)|i 6= j} in descending order of deviations
5: Set G∗ = {V,E∗}, where V = S, E∗ = ∅
6: Set k = 1
7: repeat
8: Pick the first pair (vi, vj) from Ep
9: Create Gc1=(V,Ec1),Ec1=E∗ + {vi→vj}

10: Create Gc2=(V,Ec2),Ec2=E∗ + {vj→vi}
11: Compute sk−1, sc1 for G∗ and Gc1 from Dr
12: if (sc1 > sk−1) & isDAG(Gc1) then
13: G∗ = Gc1
14: end if
15: Compute sk−1, sc2 for G∗ and Gc2 from Dr
16: if (sc2 > sk−1) & isDAG(Gc2) then
17: G∗ = Gc2
18: end if
19: Increment k by 1
20: Ep = Ep − {(vi, vj)}
21: until Ep = ∅
22: return G∗

Parameter Estimation

To estimate the parameters of a BN one can use either maximum likelihood or Bayesian estimation. If
there are an insufficient number of samples then a maximum likelihood estimate, may yield several zero
probabilities. Zero probabilities are dangerous since we can never recover from a product involving such
a probability as a factor, There can also be a problem in inference where a division by that probability is
necessary. A smoothing can be performed over maximum likelihood estimates or a Bayesian estimate can
be used as described below.

1. Maximum likelihood estimation. Assume a multinomial variableX with k possible values {x1, ..., xk}.
The maximum likelihood estimate for X = xi (i = 1, ..., k) is simply the fraction of the number samples
taking on that value, M [i], to the total number of samples M . In order to avoid zero probabilities, or
to avoid cases of division by zero, additive smoothing is used:

θi = P̂ (X = xi) =
M [i] + α

M + αk
, (2.4)

where, α = 1 for add-one smoothing.
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2. Bayesian estimation. We place a uniform Dirichlet prior on its parameters θ = {θ1, ..., θk}, i.e. θ ∼
Dirichlet(α1, ..., αk), where αi are called hyper-parameters with

∑
i αi = α. Now consider a data set

D of independent observations where the number of observations of x = xi is M [i]. Then the sufficient
statistics {M [1], ...,M [k]} is distributed by {M [1], ...,M [k]} ∼ Multinomial(θ1, .., θk). Because of the
conjugacy between the Dirichlet and the multinomial distribution, the posterior distribution of θ given
D, is also Dirichlet, θ|D ∼ Dirichlet(α′1, ..., α

′
k), where α′i = αi + M [i],∀i = 1, ..., k. The result as a

prediction is quite similar to that with maximum likelihood parameters:

P̂ (X[M + 1] = xi) =
M [i] + αi
M + α

, (2.5)

With α1 = ... = αk = 1 the Bayesian estimate reduces to the case of maximum likelihood estimate with
smoothing. We describe next the parameters obtained for the BNs for the th and and handwritten data sets.

1. Parameters for BNth. There were 3, 125 samples from 1, 254 documents written by 499 writers.
The probabilities required by the BN in Figure 2.9(a) were estimated using the maximum likelihood
approach, where no smoothing was necessary since there were few zero probabilities. The marginal
distributions are given in Figure 2.9(b).

A comparison of the marginal distributions of the characteristics given in Figure 2.9(b) with those
given in [51] was performed, The results are described in Appendix 3. The marginal probabilities of the
variables have some similarity with those given in [51]: four of the six variables are accepted as having
similar distributions and the other two rejected. That the correlation is not stronger can be attributed
to several reasons: in [51] there is no mention that the handwriting samples are representative of any
population whereas an effort was made in ours, handwriting samples can change over a period of a few
decades, the proportions of cursive and hand-print in the two data sets may be quite different (since
the th characteristics are not tuned to type), and some characteristic values are ambiguous as we found
in our ground-truthing.

2. Parameters for BNand. We used 10, 111 samples with 1, 555 writers. The parameters of the models
were determined using maximum likelihood with smoothing and evaluating the Conditional Probability
Tables (CPTs) for only the factors in the joint probability. BNs learned from the and data are given
in Figure 2.13 and the necessary CPTs are given in Tables 2.5 and 2.6. The CPTs were calculated
using maximum likelihood estimates with smoothing. The number of independent parameters needed
for the BNs are as follows:
Cursive: 2 + 4 + 12 + 15 + 20 + 15 + 10 + 12 + 9 = 99.
Handprint: 5 + 4 + 5 + 2 + 4 + 15 + 20 + 10 + 12 = 77.

Evaluation of BN Construction Algorithm
The final issue in BN structure learning is as to how good are the resulting structures. Since the true joint
distribution is unknown, we can compare with structures obtained using other algorithms, hand-constructed
ones and the simplest structure that assumes all characteristics are independent.

1. Goodness of BNth. To evaluate the performance of Algorithm 1 in constructing a BN for the th
data, we used a baseline algorithm known as branch-and-bound (B & B) [26, 25] as well as the human-
designed BN in Figure 2.9(a). Three evaluation metrics were used: log-loss s, average learning time T̄ ,
and sensitivity to training data σs. To study algorithm sensitivity, we ran validation tests 1000 times
for all candidate graphs on randomized data. For each run, we randomly selected 2

3 of the whole data
for training, and the rest for testing. Sensitivity is defined by the standard deviation of the log-loss
from multiple runs.

The corresponding three BN structures are shown in Fig. 2.12(a-c). Here we used maximum likelihood
parameter estimation with smoothing. As can be seen, the log-losses in Figure 2.9(d) are somewhat
similar, although BNSL is marginally better.

2. Goodness of BNand. Log-loss values were calculated for the BNs and a model that assumes all
variables are independent. As seen in Table 2.4, the log loss is higher with the independence assumption
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Meth-

od

Log-
loss
s

Avg.
Learn
Time
(sec.)

Sensi-

tivity
σs

B & B 2598 1.8 25.7
Human 2596 N/A -
BNSL 2589 1.6 20.0

(d)

Figure 2.12: Evaluation of BN structures learnt from th data: (a) branch and bound algorithm, (b) human
designed BN based on causality; (c) algorithm BNSL, and (d) performance metrics.

for both the cursive and hand-print data sets, thereby indicating that the learnt BN structure is the
better model.

Table 2.4: Evaluation of BN Models (log loss) for and data.
Bayesian
Network

Independent
Variables

Cursive 25329 25994
Handprint 7898 8059

Sampling from Bayesian Networks

Bayesian networks allow the generation of samples satisfying the distribution modeled in a simple way. Gibbs
sampling was used to generate a few samples whose probability is then evaluated. The algorithm for Gibbs
sampling [15] is given in Algorithm 2.

Algorithm 2 Gibbs Sampling

1: Initialize {xi : i = 1, ...,M}
2: for τ = 1, ..., T do

3: Sample x
(τ+1)
1 ∼ p(x1|x(τ)

2 , x
(τ)
3 , ..., x

(τ)
M )

4: Sample x
(τ+1)
2 ∼ p(x2|x(τ+1)

1 , x
(τ)
3 , ..., x

(τ)
M )

5: ·
6: ·
7: Sample x

(τ+1)
j ∼ p(xj |x(τ+1)

1 , .., x
(τ+1)
j−1 , x

(τ)
j+1, .., x

(τ)
M )

8: ·
9: ·

10: Sample x
(τ+1)
M ∼ p(xM |x(τ+1)

1 , x
(τ+1)
2 , ..., x

(τ+1)
M−1 )

11: end for

Where, in our case, M = 9, as we have 9 features in each sample. τ = Burn−in+Number of samples required.
The Burn-in iterations are required to ensure that the initial values that we initialize the first value of X,
has no effect on the samples generated.

The values of the conditional probabilities needed for sampling are calculated as follows.
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(a) BNcursive−and (b) BNhandprint−and

X1 X2 X3 X4 X5 X6 X7 X8 X9

0 1.34×10−1 1.36×10−1 9.75×10−2 3.79×10−1 1.99×10−1 1.69·10−2 4.66·10−1 1.96·10−1 3.25·10−4

1 3.58×10−1 6.12×10−1 8.79×10−1 2.22×10−1 2.21×10−2 2.26·10−1 3.58·10−1 2.61·10−1 3.25·10−4

2 3.34×10−1 1.21×10−1 2.34×10−2 7.73×10−2 7.61 · 10−1 6.40·10−1 1.17·10−1 3.31·10−1 9.99·10−1

3 1.74×10−1 7.14×10−3 3.06×10−1 1.82×10−2 1.17·10−1 5.91·10−2 1.31·10−1

4 1.23 · 10−1 1.66 · 10−2 8.18·10−2

(c) Marginal probabilities of cursive characteristics

X1 X2 X3 X4 X5 X6 X7 X8 X9

0 9.02×10−1 3.16×10−1 9.25×10−1 2.68×10−1 1.44×10−1 7.96·10−1 2.89·10−2 3.51·10−1 4.04·10−2

1 3.07×10−2 4.09×10−1 6.14×10−3 5.44×10−1 7.63×10−1 1.44·10−1 2.62·10−1 5.90·10−1 8.79·10−4

2 8.77×10−4 5.70×10−2 8.77×10−4 9.65×10−3 9.31×10−2 8.77·10−4 1.32·10−1 1.49·10−2 9.59·10−1

3 5.61×10−2 4.29×10−2 6.67×10−2 6.49×10−2 3.77·10−2 4.34·10−1 4.39·10−2

4 1.05×10−2 2.89×10−2 1.75×10−3 1.13×10−1 2.19·10−2 5.08·10−2

5 1.45 · 10−1 9.20·10−2

(d) Marginal probabilities of handprint characteristics

Figure 2.13: Bayesian networks for and data: (a) BNcursive−and, (b) BNhandprint−and, (c) table of marginal
probabilities for cursive, and (d) table of marginal probabilities for handprint. The necessary CPTs for (a)
are given in Table 2.5 and for (b) in Table 2.6.
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(a) X4|X2

X4/X20 3.83×10−1 3.79×10−1 4.50×10−1 1.54×10−1 3.08×10−1

1 3.03× 10−1 2.21× 10−1 1.56× 10−1 3.85× 10−1 1.88× 10−1

2 3.31× 10−2 9.52× 10−2 7.41× 10−2 3.85× 10−2 4.96× 10−2

3 2.39× 10−1 2.95× 10−1 3.10× 10−1 3.85× 10−1 4.18× 10−1

4 4.26× 10−2 9.52× 10−3 1.06× 10−2 3.85× 10−2 3.66× 10−2

(b) X6|X2

X6/X4 0 1 2 3 4
0 4.50× 10−2 1.32× 10−2 1.33×10−2 4.× 10−2 1.57× 10−2

1 2.58× 10−1 2.64× 10−1 1.11×10−1 1.2× 10−1 1.26× 10−1

2 5.55× 10−1 6.23× 10−1 7.80×10−1 6.4× 10−1 6.65× 10−1

3 1.42× 10−1 1.× 10−1 9.55×10−2 2.× 10−1 1.94× 10−1

(c) X7|X4

X7/X4 0 1 2 3 4
0 4.26× 10−1 5.28× 10−1 3.86× 10−1 4.95× 10−1 3.52× 10−1

1 3.98× 10−1 2.87× 10−1 4.94× 10−1 3.27× 10−1 2.96× 10−1

2 1.18× 10−1 1.36× 10−1 8.30× 10−2 1.10× 10−1 1.48× 10−1

3 5.81× 10−2 4.96× 10−2 3.73× 10−2 6.78× 10−2 2.04× 10−1

(d) X3|X4

X3/X4 0 1 2 3 4
0 4.70×10−2 1.55×10−1 4.46×10−1 2.65×10−2 2.08×10−1

1 9.44×10−1 8.23×10−1 5.46×10−1 9.54×10−1 2.26×10−1

2 9.41×10−3 2.19×10−2 8.33×10−3 1.91×10−2 5.66×10−1

(e) X8|X6

X8/X6 0 1 2 3
0 7.14× 10−2 2.14× 10−1 1.98× 10−1 1.68× 10−1

1 1.61× 10−1 2.90× 10−1 2.79× 10−1 1.21× 10−1

2 5.× 10−1 3.34× 10−1 3.39× 10−1 2.47× 10−1

3 2.14× 10−1 1.14× 10−1 1.01× 10−1 3.13× 10−1

4 5.36× 10−2 4.85× 10−2 8.26× 10−2 1.51× 10−1

(f) X1|X7

X1/X7 0 1 2 3
0 9.67× 10−2 1.74× 10−1 1.96× 10−1 7.57× 10−2

1 3.22× 10−1 3.96× 10−1 3.90× 10−1 3.41× 10−1

2 3.96× 10−1 2.64× 10−1 3.15× 10−1 2.92× 10−1

3 1.85× 10−1 1.66× 10−1 9.94× 10−2 2.92× 10−1

(g) X5|X3

X5/X3 0 1 2
0 5.21× 10−1 1.60× 10−1 3.07× 10−1

1 3.30× 10−3 2.51× 10−2 1.33× 10−2

2 4.59× 10−1 8.02× 10−1 4.53× 10−1

3 1.65× 10−2 1.33× 10−2 2.27× 10−1

Table 2.5: Conditional Probability Tables of characteristics of and for cursive writing needed in the BN
shown in Figure 2.13 (a).
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(a) X1|X6

X1/X6 0 1 2 3 4
0 9.56× 10−1 8.15× 10−1 2.× 10−1 2.13× 10−2 3.45× 10−2

1 1.32× 10−2 1.07× 10−1 2.× 10−1 1.06× 10−1 3.45× 10−2

2 1.10× 10−3 5.95× 10−3 2.× 10−1 2.13× 10−2 3.45× 10−2

3 2.31× 10−2 4.17× 10−2 2.× 10−1 8.09× 10−1 3.45× 10−2

4 1.10× 10−3 5.95× 10−3 2.× 10−1 2.13× 10−2 3.45× 10−2

(b) X8|X6

X8/X6 0 1 2 3 4
0 3.45× 10−1 3.77× 10−1 2.50× 10−1 4.78× 10−1 3.57× 10−2

1 6.38× 10−1 4.97× 10−1 2.50× 10−1 2.17× 10−2 3.57× 10−2

2 6.59× 10−3 1.20× 10−2 2.50× 10−1 1.74× 10−1 3.57× 10−2

3 9.89× 10−3 1.14× 10−1 2.50× 10−1 3.26× 10−1 3.57× 10−2

(c) X5|X1

X5/X1 0 1 2 3 4
0 1.35× 10−1 5.41× 10−2 3.33× 10−1 3.79× 10−1 7.14× 10−2

1 7.97× 10−1 7.57× 10−1 3.33× 10−1 2.12× 10−1 7.14× 10−2

2 6.80× 10−2 1.89× 10−1 3.33× 10−1 4.09× 10−1 7.14× 10−2

(d) X4|X5

X4/X5 0 1 2
0 4.76× 10−1 2.31× 10−1 2.45× 10−1

1 2.98× 10−1 6.09× 10−1 3.73× 10−1

2 2.38× 10−2 9.17× 10−3 9.09× 10−3

3 1.07× 10−1 4.93× 10−2 1.36× 10−1

4 9.52× 10−2 1.02× 10−1 2.36× 10−1

Table 2.6: Conditional Probability Tables of characteristics of and for handprint writing needed in the BN
shown in Figure 2.13 (b).

P (Xa|Xi ∈ (X − xa)) =
P (X)∑
Xa

P (X)
, (2.6)

where, P (X) is the joint probability calculated using the Bayesian Network models.
To sample a value of Xa from P (XaXi ∈ (X − xa)), we divide the real number line into M parts such

that each mth part is proportional to P (Xa = mXi ∈ (X − xa)) as shown in Figure 2.14. Then, a random
number between 0 and 1 is generated using the Matlab rand(1) function and its location on the number line

is determined. If the random number lies in the mth location on the line, the value of X
(τ+1)
a is set to m.

Samples generated for the cursive and hand-print datasets are shown in Table 2.7.

Figure 2.14: Dividing the number line into nine intervals for sampling.

33

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



2.3. METHODS: STATISTICAL MODEL CONSTRUCTION CHAPTER 2. RESEARCH NARRATIVE

Table 2.7: Examples of samples with highest and lowest joint probabilities: (a) Cursive- Highest (b) Cursive- Lowest
(c) Handprint- Highest (d) Handprint- Lowest. The samples were obtained by Gibbs sampling of BNs.

(a) Cursive-Common

Samples with
Characteristics

Proba-

bility

[111022022]

5.47×
10−3

[211022022]

5.10×
10−3

[111322022]

4.41×
10−3

[111022012]
4.32×
10−3

[111022122]

4.21×
10−3

(b) Cursive-Rare

Samples with
Characteristics

Proba-

bility

[002432212]

2.50×
10−9

[342433102]

1.24×
10−9

[342431242]

3.2 ×
10−10

[242433342]

1.63×
10−10

[222433342]

1.61×
10−10

(c) Handprint-Common

Samples with
Characteristics

Proba-

bility

[010110112]

1.67×
10−2

[010110302]
1.64×
10−2

[000110112]

1.29×
10−2

[000110302]

1.27×
10−2

[010110212]

8.43×
10−3

(d) Handprint-Rare

Samples with
Characteristics

Proba-

bility

[313323122]

1.31×
10−9

[353423532]
8.38×
10−10

[333323332]

6.69×
10−10

[453124532]

4.39×
10−10

[353423522]

2.85×
10−10

2.3.3 Markov Networks

Markov networks, or Markov random fields (MRFs), represent probability distributions using undirected
graphs. They have been used to represent joint probability distributions in a variety of domains: language
processing, image segmentation and restoration, statistical physics, signal processing, computational biology,
etc. Although MRFs have been used for several decades, significant open problems still remain in their use.
Here we consider the task of discrete MRF structure learning from a given data set. The problem is to
identify the MRF structure with a bounded complexity, which most accurately represents a given probability
distribution, based on a set of samples from the distribution. By MRF complexity we mean the number of
features in the log–linear representation of the MRF. This problem is proved to be NP -hard [42].

A lot of attention has been drawn to the problem of structure learning over the past years [3, 64, 47, 55,
91, 68, 24, 9, 30, 27, 65]. Most existing approaches typically focus on specific parametric classes of MRFs.
For example, the majority of existing methods allow only for MRFs with pairwise variable dependencies.
MRF structure learning algorithms can be roughly divided into two groups by their underlying approach
[44].

Constraint-based approach lies in the estimating conditional independences of variables using hypothesis
testing on a given data set. Score-based approach defines a score function for any model structure, e.g.
log-likelihood with the maximum likelihood parameters. A search algorithm can then be used to obtain the
MRF structure with the optimal score. Score-based approach is typically more flexible because there exists
a variety of scoring functions and search algorithms, however generally it is more computationally expensive
than the constraint-based approach. The latter one often lacks robustness in the presence of noise in the
data set and typically requires a large number of samples.

A fast algorithm for MRF structure learning was recently proposed [3]. It is based on evaluating condi-
tional mutual information as inspired by the early works of Chow and Liu [18]. The algorithm introduces a
pairwise factor into the MRF structure for each pair of variables with high conditional mutual information
value. Another generalization of the Chow–Liu ideas is described in [16], where a greedy approach (step
by step construction of the model) is combined with feature selection using KL-divergence gain. Using the
constraint that the resultant graphical model should be a bounded–treewidth (’thin’) junction tree, they
preserve low computational complexity of running inference.

Another recently designed and already popular algorithm for MRF structure learning is described in [64]
where the neighborhood of any given variable is estimated by performing logistic regression subject to an L1–
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constraint. It was originally designed for the Ising model (the pairwise symmetric binary model) selection.
The algorithm can be easily generalized to solve discrete pairwise MRF structure learning problems, but not
the problem of MRF structure learning with arbitrary size factors. The same approach can be combined
with trace norm regularization [30], which was shown to lead to sparse models.

A common deficiency of the above-stated algorithms is that they allow to treat MRFs with pairwise
factors only.

A promising algorithm for MRF structure learning that uses a so called ’bottom–up’ approach is described
in [24]. The algorithm starts by treating each sample in the data set as a feature in the MRF. It considers
generalizing each feature to match its k nearest previously unmatched features by dropping variables. If
introduction of a generalized feature improves the model’s objective function value than it is kept in the
model. The algorithm works with features of arbitrary size, but it tends to dense models, which complicates
inference. Another way for further improvements is the use of not only positive but also negative variables
correlations.

A widely used algorithm for MRF structure learning, called Grafting [59], uses a greedy approach.
Starting with the MRF with no features in the log–linear representation, i.e., structure without edges,
features that offer the greatest improvement to the objective function value are added iteratively. The effect
of introducing a particular feature is estimated by computing the gradient of the objective function w.r.t.
the features’ weights. A successful improvement to this algorithm is known as Grafting–Light [91]: it mixes
new feature selection and parameter estimation steps that used to be done separately. A similar algorithm
for MRF structure learning, also based on the greedy approach, defines the effect of a feature entering the
MRF as the increase in the objective function value resulting from the introduction of the feature [47]. The
objective function is a sum of the log–likelihood of a given data set and L1–regularization on weights.

The main disadvantage of algorithms based on the greedy approach is the need to evaluate a specified
expression for each possible feature not yet included in the model. This means running inference for the
MRF with each possible feature at least once at each greedy algorithm iteration, which becomes intractable
for problems with even few variables. However, the advantage of the greedy approach is that it is not limited
to MRFs with pairwise features only, i.e. features defined on more than two variables can be also considered.

Here we describe an algorithm for structure learning of discrete MRFs with arbitrary size factors that
is based on the greedy approach and uses a special heuristics for the search space reduction. The greedy
approach allows for features of arbitrary sizes, while heuristics makes the algorithm faster compared to the
existing MRF structure learning algorithms relying on the greedy approach. We call it the Fast Greedy
Algorithm (FGA) for MRF structure learning since it can be viewed as an improvement and a generalization
of the greedy algorithm described in [47].

We conducted a set of experiments on real-world and simulated data sets to assess the performance of
the designed algorithm and compare it with the original greedy algorithm [47] and some other state of the
art algorithms. The data sets and the FGA source code are available online.

The rest of the section is organized as follows: (i) formal definitions and key concepts, (ii) statement of
structure learning problem, (iii) algorithm design, and (iv) experimental results.

Preliminaries

We use a framework of log–linear discrete Markov Random Fields (MRFs) [44]. Let X = {X1, X2, . . . , Xn}
be a set of discrete–valued random variables. The log–linear model is a representation of a joint probability
distribution over assignments is X:

P (X : θ) =
1

Z(θ)
exp

(
k∑
i=1

θifi(Di)

)
(2.7)

where fi(Di) is a binary feature function defined over variables Di ∈ X, the set of all used feature functions
is denoted as F = {fi(Di)}ki=1, k is a number of features in the model, θ = {θi : fi ∈ F} is a set of features’

weights, Z(θ) =
∑
ξ exp

(∑k
i=1 θifi(ξ)

)
is a partition function, fi(ξ) is a shortened notation for fi (ξ 〈Di〉)

with a given assignment to the set of variables Di.
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For parameter learning of the MRF with a fixed structure we use the maximum likelihood estimation
(MLE) approach. The log–likelihood and its partial derivative with respect to θi are:

l(F, θ : S) =
∑k
i=1 θi

(∑
s∈S fi (ξ[s])

)
−M · lnZ(θ)

∂
∂θi

1
M l(F, θ : S) = ES [fi]− EP [fi]

(2.8)

where M is the number of samples in data set S, ES [fi] is the empirical probability of fi given data set S,
EP [fi] is the expected value of fi w.r.t. the probability distribution defined by P .

Structure Learning Problem

Assume that data set S consists of M samples. Each sample is an instantiation of the set of variables X.
The structure learning problem is as follows: With a given algorithm for the MRF parameter estimation
find a set of features F = {fi(Di)}ki=1 of size no greater than a fixed bound C that maximizes the likelihood
l(F, θ : S):

{fi(Di)}ki=1 = arg max
F ′

l(F ′, θF ′ : S), k ≤ C

where θF ′ is a set of weights estimated for the MRF with the fixed set of features F ′.
A comparatively low number of weights θ is one of the main advantages of using MRFs for representing

a joint probability distribution. To control the maximum number of weights, a boundary condition is set
on the number of features (without this condition the trivial case of including every possible feature to the
MRF would be the optimal solution for the stated problem).

Running inference is a computationally difficult task for MRFs that arises frequently. Since computational
complexity of inference is determined by the connectivity in the MRF structure [44], we define the extended
problem by adding a bound on feature domain sizes:

max
fi∈F

R(fi) ≤ r

where R(fi) is the size of the domain of feature function fi.

Fast Greedy Algorithm for MRF Structure Learning (FGAM)

Since the MRF structure learning problem NP–hard [42], we use an approximate solution. It is a greedy
approach that has no restrictions to any particular class of features. Starting with the MRF without any
features (the model where all variables are disjoint), features are introduced one at a time. At each iteration,
a feature that brings maximum increase in the objective function value is selected. The key idea of the
FGA is that the number of candidate features to enter the MRF can be limited to just two subsets. These
subsets contain features whose empirical probability differs most from their expected value with respect to
the probability distribution defined by the MRF with the current structure. The methods for estimating the
gain in the objective function value and constructing the subsets are described further in this section. The
algorithm terminates when no feature can bring an objective function gain that exceeds a pre-set threshold
or when the maximum allowed number of features in the MRF is reached. See Algorithm 3 (FGAM) for
more details.
Objective Function

We define the objective function as the average log-likelihood of the data set, see expr. 2.8, with weights
θ defined using the MLE approach. The gain in the objective function for feature fk+1, given MRF Q and
data set S, is defined as the increase in the objective function value resulting from the introduction of fk+1

to MRF Q:

GQ[fk+1] =
1

M

(
l({fi}k+1

i=1 , {θ
′′}k+1
i=1 : S)− l({fi}ki=1, {θ′}ki=1 : S)

)
(2.9)

If there is no upper bound on the number of MRF features in the problem definition then we add
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Algorithm 3 FGAM: A fast greedy algorithm for MRF structure learning

1: Input: Data set S = {si}Mi=1

2: Output: A set of features in the MRF F = {fi}ki=1 with their weights θ = {θ}ki=1

3: SetS ← FeaturesWithHighEmpiricalProbability (S) // see Algorithm 4
4: F ← ∅; θ ← ∅
5: repeat
6: fbest ← SelectBestFeature(SetS)
7: if Gain[fbest] < threshold then break; end if
8: F ← F ∪ fbest; θ ← θ ∪ApproximateV alue(θbest)
9: SetQ ← FeaturesWithHighExpectedV alue (F, fbest) // see Algorithm 5

10: for i = 1→ numOfIterations do
11: fbest ← SelectBestFeature(SetQ)
12: if Gain[fbest] < threshold then break; end if
13: F ← F ∪ fbest; θ ← θ ∪ApproximateV alue(θbest)
14: end for
15: θ ← ParametersOptimization(F, θ)
16: until SetS = ∅ ∨ SizeOf(F ) ≥ C

L1–regularization on weights to the objective function. In this case GQ[fk+1] takes the form:

1

M

(
l({fi}k+1

i=1 , {θ
′′}k+1
i=1 : S)− l({fi}ki=1, {θ′}ki=1 : S)

)
− 1

β

(
k+1∑
i=1

|θ′′i | −
k∑
i=1

|θ′i|

)
(2.10)

where β is a regularization parameter.
To compute GQ[fk+1] we have to optimize parameters of the MRF with feature fk+1: {θ′′i }

k+1
i=1 . This

operation is computationally expensive since it involves running inference and numerical optimization. How-
ever, we can use the following observation: introduction of one feature fk+1 to the MRF structure only
marginally effects the weights of the previously added features: θ′i ≈ θ′′i , i = 1, k. Hence, the effect of feature
entry at each iteration of Algorithm 3 can be assessed under the approximating assumption that all other
features’ weights hold still: θ′i = θ′′i , i = 1, k. In this case, a closed-form solution [62] for the optimal value
of the parameter θk+1 is obtained:

θk+1 = log
(1− EQ[fk+1]) · ES [fk+1]

EQ[fk+1] · (1− ES [fk+1])
(2.11)

for feature fk+1 such that: ∃s1, s2 ∈ S fk+1(ξ[s1]) = 1, fk+1(ξ[s2]) = 0.
When L1–regularization on weights is used in the objective function, expression 2.11 for the optimal

value of the parameter θk+1 takes the following form [47]:

θk+1 = log
(1− EQ[fk+1]) ·

(
ES [fk+1]− 1

β sign θk+1

)
EQ[fk+1] ·

(
1− ES [fk+1] + 1

β sign θk+1

) (2.12)

After substituting the expression for θk+1 the objective function gain takes the following form:

GQ[fk+1] = ES [fk+1] log
ES [fk+1]

EQ[fk+1]
+ (1− ES [fk+1]) log

1− ES [fk+1]

1− EQ[fk+1]
(2.13)

Hence, to calculate the objective function gain GQ[fk+1] for any feature from a given set we only need to
evaluate the empirical probability ES [fk+1], given data set S, and the expected value EQ[fk+1] with respect
to the probability distribution defined by MRF Q. The empirical probability can be evaluated efficiently
after certain transformations of data set S, see section 2.3.3.
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Figure 2.15: Gain GQ in the objective function, see expr. 2.13, for a given feature f with empirical probability ES

and expected value EQ w.r.t. the probability distribution defined by MRF Q.

Algorithm 4 Constructing a set of features with high empirical probabilities

1: Input: Data set S = {si}Mi=1 and the maximum allowed size of features r.
2: Output: A set of features with high empirical probability SetS .
3: FI ← {f ij : f ij(X) = 1{Xi = j} ∀i,∀j}
4: V ij [m] = 1{f ij (ξ[sm]) = 1}, m = 1,M, ∀f ij ∈ FI
5: F selI ← {f ij : f ij ∈ FI , 1

M

∑M
m=1 V

ij [m] ≥ threshold}
6: SetS ← {f1j : f1j ∈ F selI , ∀j}
7: for k = 2→ n do
8: F cur ← {fkj : fkj ∈ F selI , ∀j} ∪ {fc : fc = fl ∧ fkj , R(fc) ≤ r, ∀fl ∈ SetS , ∀fkj ∈ F selI }
9: Vc [m] = Vl [m] · V kj [m] , m = 1,M, ∀fc = (fl ∧ fkj) ∈ F cur

10: SetS ← SetS ∪ {fh : fh ∈ F cur, 1
M

∑M
m=1 Vh [m] ≥ threshold}

11: end for
12: SetS ← SetS \ F selI

Feature Search Space Reduction
The form of expression 2.13 for the objective function gain GQ[f ] for a given feature f (see Figure 2.15)

leads to the following key observation: there are two regions in the space of [ES , EQ] where GQ takes high
values: 1. ES [f ] is high and EQ[f ] is low; 2. EQ[f ] is high and ES [f ] is low. At each iteration of the designed
Algorithm 3 a feature f with the maximum value of GQ[F ] is selected, i.e. a feature whose (ES [f ], EQ[f ])
belong to one of these two regions. Hence, the feature search space can be reduced to two sets that corre-
spond to the stated regions, ensuring lower computational complexity without loss in accuracy. The problem
now is how to efficiently construct these two sets of features. We address this challenge by approximating
these regions with larger ones: 1a. ES [f ] is high; 2a. EQ[f ] is high. The first method that constructs a set
of features corresponding to the region 1a, see section 2.3.3, can be called before learning the structure of
the MRF, see Algorithm 3. The second method is then used to reduce the search space to a set of features
with expected values EQ[f ] corresponding to the region 2a, as described further in section 2.3.3.

Construction of a Set of Features with High Empirical Probabilities

Definition 1. A binary feature function f is called an individual feature if and only if it can be represented
in the following form: f(X) = 1{Xi = j}, i ∈ [1, n], j ∈ Range(Xi) , where n is a number of variables in

X; 1{Xi = j} =

{
1 if Xi = j
0 otherwise

. We will denote it as: f ij = 1{Xi = j}.

For an individual feature f ij and data set S we define a binary vector V ij of size M :

V ij [m] = 1{f ij (ξ[sm]) = 1} , m = 1,M

where: sm is m–th sample in data set S and M is the number of samples in data set S.
Any binary feature f for discrete valued variables X can be represented as a finite conjunction of a set of
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Algorithm 5 Constructing a set of features {f} with high expected values EQ[f ] with respect to the
probability distribution defined by MRF Q

1: Input: A set of features F = {fi} that are used in MRF Q with the corresponding weights {θ} and
the last added to MRF Q feature flast.

2: Output: Set of features SetQ{f} with high expected values EQ[f ].
3: FI ← {f ij : ∃fk ∈ F, f ij ∈ fk, θk > 0}
4: F lastI ← {f ij : f ij ∈ flast, ∀i, ∀j}
5: SetQ ← ∅
6: for all f ij ∈ F lastI do
7: F cur ← {f ij}
8: for all fkl ∈ FI do
9: for all f c ∈ F cur do

10: if (R(f c) < r) ∧ (Dkj ∩Dc = ∅) then //where: Dc – is a domain of the feature f c

11: F cur ← F cur ∪ {f : f = fkj ∧ f c} end if
12: end for
13: end for
14: SetQ ← SetQ ∪ F cur \ F \ FI
15: end for

individual features FI . The corresponding binary vector V for feature f is: V [m] =
∏
fij∈FI

V ij [m] , m =

1,M . Empirical probability ES [f ] for feature f estimated using data set S is equal to the average value of
the elements in vector V .

Algorithm 4 constructs a set SetS of features with empirical probabilities exceeding a given threshold.
It uses the idea of selecting individual features with empirical probabilities exceeding the threshold and
combining them in every possible way. Since the number of features in SetS grows exponentially with the
number of variables in X, it is managed through choice of threshold value.

Construction of a Set of Features with High Expected Values

To construct SetQ containing features with high expected values EQ[f ] with respect to the probability
distribution defined by MRF Q Algorithm 5 can be used. It relies on the following observation: features {f}
with high expected values EQ[f ] include individual features that are already used in MRF Q with positive
weights. Algorithm 5 constructs all possible conjunctions of such individual features.

To limit the number of features in SetQ we use the following observation: all of the features in SetQ
must include at least one individual feature from set F lastI of the individual features that were added to the
MRF at the last iteration of the Algorithm 3. The reason is that all the features that do not include any
of the elements of F lastI were considered in the previous iterations. We assume that the expected value of a
feature considered earlier (that does not include any of F lastI ) is not increasing with introduction of a new
feature that consists of F lastI to the MRF with a positive weight.

Empirical Evaluation

Algorithm 3 (FGAM) for MRF structure learning was evaluated and compared with baseline algorithms with
simulated and real-world data sets. The rationale for the choice of baseline algorithms is as follows. The
designed algorithm is a generalization of the greedy algorithm described in [47] (which corresponds to using
zero values of thresholds and parameter ’numOfIterations’ in Algorithms 3, 4 and 5); the latter is based on
the ideas of [62] and comparisons can be found with other state of the art methods. Hence, we compare the
designed algorithm with the original greedy algorithm for structure learning of MRFs with arbitrary size
factors described in [47]. Additionally, on the handwriting data set we also applied the algorithm described
in [3] in order to demonstrate that using features of arbitrary size in comparison to pairwise features can
possibly lead to better accuracy in real-world applications.
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Figure 2.16: Accuracy and construction time comparison of the greedy algorithm with L1–regularization on weights
[47] (green dot line) and the designed fast greedy algorithm (blue solid line) for data sets with different number of
variables.

Test Results with Simulated Data. To assess the performance of the discussed algorithms on problems
of varying complexities we created a synthetic data set generator from multivariate normal distribution.
The generated values were rounded to the nearest integer from a given interval. The range of each variable
Xi ∈ X was chosen uniformly on the interval [1, 20] and the distribution parameters were also uniform on
variables’ ranges. The number of variables in X in the generated data sets varied from 5 to 10. The size of
each data set was equal to 200 times the number of variables in the data set.

Figure 2.16 shows the results of applying the greedy algorithm with L1–regularization on weights [47] and
the presented FGA algorithm to the generated data sets. We used 3-fold cross validation and 3 data sets for
each number of variables. The first graph in Figure 2.16 indicates that the accuracy of both algorithms was
almost the same for all the test runs. The second graph shows that the execution times for the FGA algorithm
are several orders of magnitude smaller compared to the the original greedy algorithm (1249 sec compared
to 189451 sec for the data set with 10 variables on a system with a dual core processor - Intel Core i5-2410M).

Test Results with Handwriting Data. Consider a task of identifying unusual and unique characteristics,
i.e., rare letter and word formations. Rarity is the reciprocal of probability. Using the most commonly
occurring letter pair th and the characteristics specified in Table 2.2, the highest probability formations and
low probability formations in a database were determined. The most crucial task in this problem is learning
the probabilistic model structure [72]. The sample of th in Figure 2.17(f) is jointly encoded using the specified
characteristics as {r3, l4, a1, c1, b2, s3} and the sample in Figure 2.17(g) – as {r0, l2, a0, c3, b1, s2}. The data
set contains 3, 125 images authored by 528 individuals, some of whom contributed just one sample while
some – upto 7.

Figure 2.17 shows five alternative MRF structures (a)-(e): both the first and the second were constructed
independently by domain experts, the third one was created by an algorithm based on thresholding condi-
tional mutual information [3], the fourth resulted from the general greedy algorithm with L1–regularization
[47], and the fifth MRF is the result of the FGA. Performance of each of the MRF structure learning meth-
ods is summarized in Table 2.8. Weights were obtained using maximum likelihood estimation (MLE) with
L-BFGS [49] as the optimization algorithm. Table 2.8 shows structure learning time (on a system with a
dual core processor Intel Core i5-2410M) and average log-loss (negative log-likelihood) obtained using 3-fold
cross-validation. Probabilities of the most common and rare th formations in the data sets are also shown in
the table. The designed fast greedy algorithm gives about the same accuracy as the original greedy algorithm
[47] but the required construction time is significantly lower.

In terms of the results quality, the instance in Figure 2.17(f) has the highest probability with all the
tested MRFs. The instance in Figure 2.17(g) is among the top ten samples with the lowest probability in
the data set for all the MRFs, which indicates that handprint writing is more common than cursive in the
database.
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(a) (b) (c) (d) (e) (f) (g)

Figure 2.17: Candidate MRFs: first two were manually constructed, the third – by the modified Chow-Liu algorithm,
fourth MRF – by the original greedy algorithm and the fifth – by the proposed FGAM; and (f) the highest probability
‘th’ in data set and (g) a low probability ‘th’.

Table 2.8: Results of MRF structure learning with 3-fold cross-validation.
MRF Construction Time of structure Average Probability of ’th’ Probability of ’th’
index method learning (sec) log-loss in Fig. 2.17(f) in Fig. 2.17(g)
MRF1 Manual n/a 6.428 1.59 · 10−2 16 · 10−6

MRF2 Manual n/a 6.464 1.82 · 10−2 6 · 10−6

MRF3 Mod. Chow–Liu 2 6.426 1.7 · 10−2 5 · 10−6

MRF4 Greedy w. L1–reg 53 6.326 1.94 · 10−2 25 · 10−6

MRF5 FGA 7 6.328 1.8 · 10−2 21 · 10−6

2.4 Methods: Statistical Inference

In Sections 2.3.2 and 2.3.3 we have described how to construct directed and undirected probabilistic graphical
models from data consisting of characteristics of handwriting samples. Now we consider the problem of given
such a model of the probability distribution, how to evaluate the probabilities of interest in forensics.

Two types of probabilistic queries are of potential interest in QD examination: (i) those relating to a
given handwritten item, e.g., a single handwritten item which is either known or questioned, and (ii) those
relating to the comparison of two handwritten items, e.g., both questioned and known. We refer to the first
as the probability of evidence: a high probability of characteristics implies that the characteristics relate to
a class, and a low probability implies rarity or individualizing characteristics. Another probability relating
to a single handwritten item is the probability of random correspondence (PRC) which can be calculated
from the entire distribution of the characteristics. A third probability relating to a given handwritten item
is that of type, e.g., probability of cursive/hand-print.

The second type of probabilistic query relates to both the evidence and known, called as the probability of
identification. This probability is useful for forming a forensic conclusion. While computing the probability
of evidence is computationally complex, probability of identification is even more so.

2.4.1 Probability of Evidence

Type of Writing

One of the first decisions the QD examiner has to make is whether a given handwritten item is cursive
or hand-printed. This can be formulated probabilistically as discussed in Appendix 5. For the propose of
statistical analysis of characteristics, the handprint/cursive decision was made manually by QD examiners.

Rarity of Characteristics

An important decision for the QD examiner is to determine individualizing characteristics, as opposed to
class characteristics which are common to a group. This means that we are interested in characteristics that
are unusual or rare or have a low probability. Thus the simplest probabilistic query of interest to the QD
examiner is the probability of the characteristics found in the handwritten item. This is evaluated in the
case of a Bayesian network by using Eq. 2.1 and in the case of a Markov network by Eq. 2.7.
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(a) (b)

Figure 2.18: Examples of rarity evaluation: (a) the highest probability th in data set, and (b) a low probability th.

Since rarity is the reciprocal of probability its definition follows from that of probability. We can formally
define rarity in discrete and continuous spaces as follows.

Def. 1 (discrete)
Given a probability space (Ω,F , P ), the rarity of a random event ξ ∈ F is defined by

R(ξ) =
1

P (ξ)
, (2.14)

where Ω is the sample space, F ⊆ 2Ω is the set of events, P is the probability measure, and P (ξ)(6= 0) is the
probability of the event ξ.

Def. 2 (continuous)
Let x = (x1, ..., xn)T be a continuous n-dimensional random vector with the p.d.f. p(x) defined on a domain
S. Suppose for every assignment of x ∈ S, there is a confidence interval (x− ε/2,x + ε/2) associated with
x at a given confidence level 1− α, where ε = (ε1, ..., εn)T , and α is a small positive value less than 1. This
interval (x− ε/2,x + ε/2) is a n-dimensional region whose volume is

∏n
i=1 εi. Then the rarity of the event

that x takes value x0 is given by

R(x = x0) =
1∫ x0+ε/2

x0−ε/2p(x)dx
. (2.15)

Since the magnitude of ε is usually small, the density in the region (x0 − ε/2,x0 + ε/2) can be considered
as constant, therefore (2.15) can be approximated by

R(x = x0) =
1

p(x0)
∏n
i=1 εi

,∀x0 ∈ S. (2.16)

Examples of Rarity Evaluation:
Probabilities assigned by BNth to each element in the database was evaluated using Eq. 2.1. The highest
probability assigned by the model is to the feature value {r1, l0, a0, c0, b2, s1} with probability 0.0304. It
corresponds exactly to the features assigned to writer 100 in the database whose writing is shown in Figure
2.18(a). The lowest probability assigned is to {r2, l3, a2, c2, b0, s4} with value 7.2×10−8 which does not have a
corresponding element in the database. A low probability th is shown in Figure 2.18(b) {r3, l1, a0, c2, b0, s1}.

Examples of highest and lowest probability and are shown in the examples of Table 2.7 where common
and rare forms of handwritten and are given for cursive and hand-print cases together with probabilities. The
rare cases are those with low probabilities assigned by the model, i.e., they are in the tail of the distribution.
The corresponding characteristics can be considered to be individualizing. The common ones, i.e., those
with high probabilities, are more representative of class characteristics.
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(a)

X1, X2 Z =
z0

Z =
z1

d(X1, X2) ≤ ε 1 0
d(X1, X2) > ε 0 1

(b)

(c) (d)

Figure 2.19: Graphical models for determining random correspondence: (a) PRC, the probability of two samples
having the same value within ε, where the indicator variable Z: P (Z|X1, X2) has the distribution shown in (b),
(c) the probability of some pair of samples among n having the same value, nPRC, and (d) conditional nPRC, the
probability of finding Xs among n samples and.

Random Correspondence

For a distribution P (X), the Probability of Random Correspondence (PRC), can be defined as the probability
that a random pair of samples have the same value. Since PRC is a function of the distribution, it is
mathematically a functional just like entropy. It is a measure of the discriminatory power of X.

We can extend PRC to define the probability that at least one pair among n have the same value, called
nPRC. We can also define the conditional PRC as the probability that a known value Xs is found among n
such samples[80]. These definitions are formalized below.

PRC
Probability that two independent, identically distributed samples X1 and X2, each with distribution P (X),
have similar values is given by the graphical model (Bayesian network) in Figure 2.19(a). It is evaluated as
follows:

ρ = P (Z = z0) =
∑
X1

∑
X2

P (z0|X1, X2)P (X1)P (X2) (2.17)

where Z is a binary indicator variable which takes values {z0, z1} and has the deterministic CPD [44] shown
in Figure 2.19 (b), also given by

P (z0|X1, X2) =

{
1 if d(X1, X2) ≤ ε
0, otherwise,

(2.18)

d measures the difference between its arguments, the quantity ε represents as to how different two samples
can be while they are considered to correspond (be the same), and P (z1) = 1 − P (z0). The quantity ε
is a tolerance that takes value 0 when the two varibles X1 and X2 are identical. If d is the number of
characteristics that are the same then ε = 1 would lead to X1 and X2 being considered to be the same if
they do not differ in more than one variable.

The PRC of th with ε = 0, i.e., exact match, and determined using the BN was evaluated to be 2.62×10−13.
Using the BN models for and constructed as in Figure 2.12, the PRC was evaluated as: 7.90×10−4 for cursive
and 6.85×10−3 for hand-print. This value of PRC can be used to compare the discriminative power of and to
those of other letters and combinations. For instance, cursive writing is more individualistic than hand-print.

It should be noted that the PRC can be computationally intensive. The double summation in Eq. 2.17
indicates the root of the problem. When ε = 0 the evaluation can proceed without having an inordinately
large number of joint probabilities. However, if we were to allow correspondence with one or more character-
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Figure 2.20: Probability of finding a random match for and among n writers for cursive and handprint. These plots

of nPRC show the discriminative power of the characteristics, with cursive writing of and being more individualistic

than hand-printing.

istics not matching, the number of terms in the summation is exponential, e.g., if we have nine characteristics
with each having four possible values, the number of possible values for X1 and X2 can go unto 418 which
is greater than billion. Thus approximate inference algorithms will be needed.

nPRC
The probability that among a set of n ≥ 2 independent, identically distributed samples X = {X1, .., Xn},
some pair have the same value within specified tolerance is given by the graphical model in Figure 2.19(b).
The nPRC, can be written in terms of the PRC as

ρ[n] = 1− (1− ρ)
n(n−1)

2 . (2.19)

Note that when n = 2, PRC=nPRC. Since there are
(
n
2

)
pairs involved this probability can be much higher

than PRC. For instance, in the famous birthday paradox, while the probability of a birthday (PRC) is 1/365,
the value of nPRC for n = 24 is 0.5.

Values of nPRC for and obtained for different values of n are plotted in Figure 2.20. While nPRC for
both cursive and handprint gradually increases until it reaches 1, it increases faster for hand-print.

Conditional nPRC
The probability that given a specific value it coincides, within tolerance, one in a set of n samples drawn
from the same distribution is given by the graphical model in Figure 2.19(c). Since we are trying to match
a specific value it depends on the probability of the conditioning value. It is smaller than nPRC and can
be lower than the PRC. The exact relationship with respect to PRC depends on the distribution. The
conditional nPRC is given by the marginal probability

p(Z = 1|Xs) =
∑
X

p(Z = 1|Xs,X)p(X). (2.20)

In the case of identical match this can be shown to be equivalent to

1− (1− P (Xs))
n (2.21)

.
Conditional nPRC for the two writers in Figure 2.18 were evaluated using Eq. 2.21. Plots as a function

of n for d(X,Y ) = 0 and d(X,Y ) = 1 are shown for the two writers in Figure 2.21 considering exact match
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(a) (b)

Figure 2.21: Probability of finding a matching entry for th in a database of size n, called conditional nPRC: (a)
exact match, and (b) match with one feature mismatch allowed. The two graphs in each figure correspond to Xs

being the most common th and a rare th whose forms are shown in Figure 2.18.

Table 2.9: Probability of finding an identical match for a given and among 7000 writers.
Sample (Xs) Conditional nPRC,

with n = 7, 000
Cursive and [1,1,1,0,1,2,0,0,2] 2.64× 10−6

[0,1,0,2,2,3,0,3,2] 1.13× 10−5
Handprint and [0,5,0,1,1,0,1,1,2] 7.28× 10−4

[0,0,0,0,2,0,0,1,2] 1.09× 10−4

and with a tolerance of mismatch in one feature. With n = 10 the probabilities of exact match for the
two writers were 0.041 and 3.1× 10−11 respectively, and probability allowing one mismatch were 0.387 and
7.69× 10− 10.

For the two samples each for cursive and handprint datasets obtained from our model using Gibbs’
sampling in Section 2.3.2, the probability of finding an identical match with n = 7000 is shown in Table 2.9.

2.4.2 Probability of Identification

We now consider how a probabilistic model for rarity can be combined with a probabilistic model of similarity
so that the probability of identification can be determined. Such a probability can then be discretized into
an opinion scale.

Let S = {si} be a set of sources. They correspond to, say, a set of individual writers. Let o be a random
variable representing an object drawn from a source si, e..g., a handwriting specimen of a known writer. Let
e be a random variable representing evidence drawn from a source sj , e.g., a questioned document. The task
is to determine the odds of whether o and e came from the same or different source.

We can state two opposing hypotheses:
h0: o and e are from the same source (i = j); and
h1: o and e are from different sources (i 6= j), which are the identification and exclusion hypotheses of
forensics; some forensic statistics literature also refers to them as prosecution and defense hypotheses[1].

We can define two joint probability distributions P (o, e|h0)and P (o, e|h1) which specify as to how often
each instance of the object and evidence occur together when they belong to the same source or to different
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Figure 2.22: Probability of identification is a sigmoid function of the log-likelihood ratio.

sources. The relative strengths of evidence supporting the two hypotheses is quantified by the likelihood
ratio

LRJ = LR(o, e) =
P (o, e|h0)

P (o, e|h1)
. (2.22)

The corresponding log-likelihood ratio, LLR(o, e) = lnP (o, e|h0) − lnP (o, e|h1), has representational ad-
vantages: its sign is indicative of same or different source, it has a smaller range than LR, and additivity of
contributions of independent features2.

It is useful to convert the LR into a probability of identification (and exclusion) using a Bayesian formula-
tion. Let the prior probabilities of the hypotheses be P (h0) and P (h1) with P (h0)+P (h1) = 1. Defining the

prior odds as Oprior = P (h0)
P (h1) , we can express the prior probability of the same source as P (h0) = Oprior/(1+

Oprior). The prior odds can be converted into posterior odds as Oposterior = P (h0|o,e)
P (h1|o,e) = Oprior × LR(o, e).

Thus we can write the posterior probability of the same source as P (h0|o, e) = Oposterior/(1 + Oposterior).
The particular case of equal priors is of interest in forensics, as opinion without prior bias. In this case we
get a simple form for the probability of identification as

P (h0|o, e) =
LR(o, e)

1 + LR(o, e)
=

exp(LLR(o, e))

1 + exp(LLR(o, e))
=

1

1 + e−LLR(o,e)
= σ[LLR(o, e)]. (2.23)

where σ is the sigmoid function σ(a) = 1
1+e−a . The probability of exclusion is P (h1|o, e) = 1−P (h0|o, e) =

1/[1 + LR(o, e)] = 1/[1 + eLLR(o,e)].
The probability of identification with respect to the LLR follows a sigmoid function as shown in Figure

2.22. This function reaches either 1 or zero very quickly with the value of LLR. Thus the LLR has to
computed quite precisely for the probability of identification to provide meaningful discrimination.

2In performing LLR additions, since LR values in the interval (1,∞) convert to positive LLRs and LR values in the interval
(0, 1) convert to negative LLRs, the precisions of LRs < 1 must be high, otherwise the ranges of positive and negative LLRs
will not be symmetric.
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(a) (b)

Figure 2.23: Distributions of sources for object and evidence: (a) Normally distributed sources, where each source
si (i = 1, 2, ...) is N (θi, σ

2). Samples may come from a common source si or different sources si and sj (si 6= sj).
(b) Source means {θ1, θ2, ...}, are assumed to have distribution N (µ, τ2), with τ � σ. Samples coming from sources
θ1, θ10 are rarer (less frequent) than samples from θ6 and θ7, suggesting that information about the distribution of
source means is useful to assess strength of evidence.

The key to determining the probability of identification is to determine LR defined by Eq. 2.22, which
in turn requires the distributions P (o, e|hi)(i = 0, 1), defined over all possible values of objects and their
evidential forms. If o and e are n-dimensional binary vectors with each feature taking K possible values,
then 2K2n parameters are needed to specify the joint distribution. Determining these distributions is com-
putationally and statistically infeasible. Computationally, kernel density estimation [2] and finite mixture
models [53] have been proposed, but they have limitations as well. More important is the statistical limita-
tion of having a sufficient number of samples for so many parameters. Today, objects and evidence can be
represented by ever finer features due to higher camera resolution and automatic feature extraction methods
and their possible evidential forms is infinite.

One method of simplification is to use a (dis)similarity function between object and evidence. The
approach is to define d(o, e) as a scalar distance between object and evidence and define another likelihood
ratio as follows

LRD = P (d(o,e)|h0)
P (d(o,e)|h1) . (2.24)

The number of parameters needed to evaluate LRD is constant, or O(1), and is independent of the number
of features n. Due to its simplicity, this method has been widely used in fingerprint identification [56],
handwriting analysis [74], pharmaceutical tablet comparison [17], etc.

For certain features spaces and distance measures, e.g., continuous features with Euclidean distance, this
approach is equivalent to a kernel method [69]. The scalar distance d is just the magnitude of the vector
difference d. However, because it maps two distributions of 2n variables each into two scalar distributions
there is severe loss of information (many pairs of o and e can have the same distance). A natural extension
is to use vector difference d, which quantifies the distribution of both the magnitude and the orientation
of the difference between o and e, giving a much fine-grained characterization of the difference between o
and e. While this likelihood ratio LRV D, provides the simplification of mapping two distributions of 2n
variables each into two distributions of n variables each, there is still a loss of information in the many to
one mappings.

Lindley’s Result

Evaluating LR+ was considered by Lindley [48] when the object and evidence arise from univariate Gaussian
distributions. This is illustrated in Fig. 2.23. There was a single characteristic, the refractive index of glass.
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Figure 2.24: Comparison of five methods of computing the likelihood ratio. For each method the average error rates
are on the left (blue) and time per sample on the right (red).

In this case the object is a fragment sample on a window and evidence is a sample on a suspect’s clothing.
It is assumed that the object and evidence are continuous scalar random variables drawn from the same

or different sources. Samples are normally distributed about its source mean with a known constant variance
σ2; the source mean is normally distributed with mean µ and variance τ2 with τ >> σ, and there are p
object samples with mean o, and q evidence samples with mean e with p = q, then the likelihood ratio can
be approximated by

LR(o, e) = τ

σ
√

2/p
exp

{
− (o−e)2

4σ2/p

}
exp

{
(m−µ)2

2τ2

}
, (2.25)

where m = (o+ e)/2 is the mean of o and e.

Generalization of Lindley’s Result

Lindley’s result only pertains to a single variable. In the generalization of Eq. 2.25 to several variables [84],
LR is approximated as the product of two factors, one based on difference and the other on rarity :

LRDR = P (d(o, e)|h0) ∗ 1
P (m(o,e)) , (2.26)

where d(o, e) is the difference between o and e, and m(o, e) is the mean of o and e.
Average error rates, obtained by thresholding the LR into correct/wrong decisions, using the different

methods of computing LR discussed earlier, are shown in Fig. 2.24. The distance and rarity method is seen
to perform much better than both the simple distance methods and a joint distribution method that assumes
independent characteristics.

2.4.3 Opinion Scale

The task of QD examination of handwritten items is typically to make a decision of whether or not two items
have the same origin. Providing a strength of opinion or evidence for any such decision is an integral part.
SWGDOC recommends a nine- point scale: [1-Identified as same, 2-Highly Probable same, 3-Probably same,
4-Indicating same, 5-No conclusion, 6-Indicating different, 7-Probably different, 8-Highly probably different
and 9-Identified as different].
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In the context of an automatic system we have previously introduced a statistical model which, for the sake
of completeness, is summarized in Appendix 6. It is based on the philosophy that the strength of evidence
should incorporate: (i) the amount of information compared in each of the two items (line/half page/full
page etc.), (ii) the nature of content present in the document (same/different content), (iii) characteristics
used for comparison and (iv) the error rate of the model used for making the decision.

Adequacy of Evidence

Adequacy of evidence can be naturally included in the likelihood ratio approach. In likelihood ratio based
decision methods, often a variable number of input evidences is used. A decision based on many such
inputs can result in nearly the same likelihood ratio as one based on few inputs. We consider methods for
distinguishing between such situations. One of these is to provide confidence intervals together with the
decisions and another is to combine the inputs using weights. We suggest a new method that generalizes
Bayesian approach and uses an explicitly defined discount function. Empirical evaluation shows greater
flexibility of the designed method.

Consider statistical decision methods based on likelihood ratio. Assume that: h0 – a hypothesis of
interest, h1 – the alternative hypothesis to h0, F = {fi}ni=1 – a set of n observed features. Then:

P (h0|F ) + P (h1|F ) = 1 (2.27)

Applying Bayes’ rule and assuming that all features are independent we get:

P (h0|F ) =
P (h0) ·

∏
i LR(fi|h0, h1)

P (h1) + P (h0) ·
∏
i LR(fi|h0, h1)

(2.28)

where: LR(fi|h0, h1) = P (fi|h0)
P (fi|h1) – is a likelihood ratio of fi for h0 to h1.

A variable number of features can be used. Nearly the same likelihood ratio value LR(F |h0, h1) (and the
same overall result) can be based on many features and on few of them.

For example, assume the following two cases:

1. A discrete uniform prior (P (h0) = P (h1) = 0.5) and one feature F = f1 with LR(f1|h0, h1) = 96.

2. A discrete uniform prior (P (h0) = P (h1) = 0.5) and nine features F = {fi}9i=1 with likelihood ratios
{3, 4, 2, 1

4 , 2, 2,
1
3 , 6, 2} accordingly.

For the first case we get: P1(h0|F ) = 96
97 , which is the same as P2(h0|F ) = 96

97 – a posterior probability of
h0 in the second case. Consider the QD pplication where: h0 – two compared documents were written by
the same person, h1 – written by different people. In the first case the result is based on one feature (a
discriminating characteristic in QDE) and could be just a chance, whereas in the second case the support of
h0 tends to be more trustworthy since it is based on nine features. We consider methods for distinguishing
between such cases. This problem is especially important in case when probabilities of features are estimated
approximately.

One of these methods is to use not a single numerical value for posterior probability of h0 but a credible
interval [19]. When there are no parameters of h0 then we can assume that there is a distribution of
likelihood ratios and estimate a credible interval for it. A crucial part of this approach is to define a proper
prior probability for likelihood ratios.

Another way of dealing with the problem at hand is to use statistical hypothesis testing [23]: to define
likelihood ratio confidence interval with a given level of confidence. If we assume a log–normal distribution
with unknown mean and variance as a distribution of likelihood ratios than we can calculate confidence
interval for log–likelihood ratio mean and use it in equation 2.28.

A completely different approach to the problem is to use a score instead of posterior probability of h0.
This approach allows us not to make any assumptions about likelihood ratio distribution. We have designed
such scoring method based on Bayesian approach with weighted likelihoods and a discount function that
diminishes the score when features in a comparison have a small sum of weights.
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Assume two hypotheses: h0 – Q and K have the same writer; h1 – different writers, with prior probabilities:
P (h0), P (h1). Set F = {fi}ni=1 of n extracted features (e.g. F is a set of discriminating characteristics in
compared documents). The problem is to get a score for hypothesis h0 that reflects how likely h0 is true in
comparison with its alternative and that explicitly includes how trustworthy a hypotheses comparison is.

Here we assume that all features X are independent from each other. A common way to solve the problem
is to use Bayesian approach (see equation 2.28). To adapt its ideas in order to explicitly include a hypotheses
comparison trustworthiness we discuss several existing methods and suggest a new one.
Methods for Relative Scoring of Hypotheses

Assume that likelihood ratios of features are themselves i.i.d. samples of some distribution. For example,
we can assume that it is a log–normal distribution. Then it is possible to identify a credible interval [4]:
an α · 100% credible interval is a set C such that P (C) = α. There are different ways to evaluate credible
intervals approximately or exactly when it is possible [4]. Values of equation 2.28 determined on credible
interval boundaries together with level α define a result for the stated problem.

An analogy in some way of a credible interval in statistical hypothesis testing is a confidence interval
[23]. It is an interval (Lα(F ), Rα(F )) evaluated from a given set of features F , that frequently includes the
parameter of interest, if the experiment is repeated. The frequency here is determined by confidence level
α. For example, the parameter of interest could be mean of log–likelihood ratios if they comply with the
log–normal distribution. Values of equation 2.28 determined on confidence interval boundaries along with
confidence level α define a solution for the stated problem.

A useful property of using credible or confidence intervals is that in most cases with increase in the
number of features the distance between interval boundaries is decreasing. A problem of using credible or
confidence intervals is a necessity of combining interval boundaries and level α into one score if only one
single value is required by the application (as a score for hypothesis h0).

To drop any assumptions on likelihood ratio distributions, we have designed a new method to solve the
problem. To include credibility of the hypotheses comparison into the score we suggest to use the following
expression instead of posterior probabilities ratio:

S

(
h0|F
h1|F

)
=
P (h0)

P (h1)
·

(
n∏
i=1

(
P (fi|h0)

P (fi|h1)

)wi
)d(

∑
i wi)

(2.29)

where: S

(
h0|F
h1|F

)
– is the relative score of hypothesis h0 against h1. The following term:

n∏
i=1

(
P (fi|h0)

P (fi|h1)

)wi

(2.30)

is a weighted likelihood ratio [87], where weights wi ∈ R+. A trivial set of weights is:

wi = 1, i = 1, n (2.31)

which defines that all of the used features are equal in their contribution to the overall value. A more
discriminating approach is to use higher weights for more accurate and influential features.

Function d(
∑
i wi) : R+ → R+ is a discount function which reflects a credibility of the comparison. It

ought to give a support to a comparison with big sum of features weights and discount the score for a
comparison with the small sum. A trivial discount function is:

d0

(
n∑
i

wi

)
=

n∑n
i wi

(2.32)

which does not make any discount but normalizes weighting scheme. An example of discount function which
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Figure 2.25: Confidence intervals. Scores on normal distribution N (50, 25) (a-b) and uniform distribution U [0, 100]
(c-d): i) Green solid lines – 95% confidence intervals for the log-likelihood ratio mean; ii) Blue circles – log–likelihood
ratio; iii) Red dots – discounted weighted log–likelihood ratio score with trivial weights (eq. 2.31) and discount
function d1 (eq. 2.33) and threshold m = 100.

makes a discount for a small sum of weights is:

d1

(
n∑
i

wi

)
=

n

max(m,
∑n
i wi)

(2.33)

where: m is a constant threshold. When trivial weights are used and a number of features is more than a
threshold then score S is equal to the ratio of posterior probabilities defined in equation 2.28.

Another example of discount function applies different discounts for different values of sum of weights:

d2

(
n∑
i

wi

)
= β · log

(
n∑
i

wi

)
(2.34)

where: β – is a magnitude parameter.
Accuracy of using score S instead of posterior probability ratio can be at least the same since the ratio

is a special case of S with trivial weights and the trivial discount function. Another advantage of using
score S is absence of additional assumptions in comparison with using credible or confidence intervals. The
disadvantage however is that in general it results in a score for the hypotheses of interest in comparison with
its alternative, but not in the posterior probability.
Experimental Results

To reveal pros and cons of the described methods we have conducted a set of experiments. Synthetically
created data sets were used since it allows to compare methods on different (initially specified) sample
distributions and with a wide range of data sets sizes. Two types of data sets were used:

I) Data set consists of values derived from normal distribution N (50, 25) with mean µ = 50 and variance
σ2 = 25.

II) Data set consists of values derived from uniform distribution U [0, 100] defined on interval [0, 100].

Data sets of each type consisted of 5 through 125 samples with step size of 5. Every sample in each data set
represents a log–likelihood ratio value for one feature.

Throughout testing we use a discrete uniform prior:

P (h0) = P (h1) = 0.5

Hence, we focus on a score for log-likelihood ratio (LLR) rather than on a posterior score for the hypotheses
h0. The following methods were used in the comparison:
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I) Original Bayesian approach where score is defined as posterior probabilities ratio of the hypotheses.

II) An approach based on estimation of confidence interval for LLR distribution mean. We assume that
likelihood ratios have a normal distribution N (µ, σ2) with unknown mean and variance.

III) Discounted weighted likelihood ratio with trivial weights (see equation 2.31) and discount function d1

(see equation 2.33) and threshold m = 100.

We did not include an approach based on credible intervals since if we assume that log–likelihood has a
normal distribution with unknown mean and precision and use a normal–gamma distribution as a conjugate
prior then (with certain parameters) credible and confidence intervals coincide[52].

Results on data sets generated from normal distribution N (50, 25) are shown in figures 2.25(a) and
2.25(b). Results on data sets generated from uniform distribution U [0, 100] are shown in figures 2.25(c) and
2.25(d). Blue circles show log-likelihood ratio (method I); green solid lines and blue circles on figures 2.25(b)
and 2.25(d) show 95% confidence intervals and log-likelihood ratio average accordingly (method II); red dots
show discounted weighted log-likelihood ratio score (method III).

In both sets of tests method III converges to log-likelihood ratio for large numbers of samples and gives
a discounted value for small number of them. In particular, the score average is close to zero for less than
10 samples while LLR average is the same as for large number of samples (see figures 2.25(b) and 2.25(d)).

Let us refer to the example from the introduction: comparison of two cases (in the first case one feature
is given and in the second - nine features). Applying Bayesian approach we get:

P1(h0|F ) = P2(h0|F ) = 0.99

where: P1(h0|F ) – posterior probability of h0 in the first case, which is the same as posterior probability
P2(h0|F ) of h0 in the second case. Using discounted weighted likelihood ratio with same parameters as
earlier (trivial weights and discount function d1 but with threshold m = 20) we get the following posterior
probability scores for the first and the second cases:

P s1 (h0|F ) = 0.89, P s2 (h0|F ) = 0.56

The use of the proposed score enables distinguishing between such cases.
Experimental results show that there are the following disadvantages of using confidence intervals: i) a

necessity to make an assumption about log-likelihood ratios distribution; ii) confidence interval boundaries
are wide (even for 95% confidence level) and especially in case when real data distribution is different from
the assumed one (see figure 2.25(c-d)); iii) there is no common way to combine confidence interval boundaries
and confidence level into one score (see figures 2.25(a),2.25(c): if we use confidence interval boundaries times
the number of samples then the result scores become even more distant).

The advantages of using a discounted weighted likelihood are: i) it generalizes Bayesian approach and
allows to explicitly set a discount for hypotheses comparison based on a few features; ii) no need to make
additional assumptions on likelihood ratios distribution; iii) flexibility of choosing weights and discount
function allows tuning the approach for every particular application. However, there are disadvantages also:
i) the likelihood score results not in a posterior probability but in a relative score; ii) the flexibility of choosing
weights and a discount function makes it non-trivial to find the best settings for a particular application.
Summary of Evidence Combination

The problem of estimating a posterior score of a hypothesis given prior beliefs and a set of evidences
(observed features) has been considered. A common way of using posterior probability as the score has
a drawback. Nearly the same result can be based on many features and on few of them, which can be
important to distinguish. We consider methods for distinguishing between such situations. One of these is
to provide confidence intervals for the obtained result and another is to combine features using weights and
a discount function. The usage of intervals has the following problem: there is no common way to combine
interval boundaries and the corresponding level into one score.

The designed method has the following advantages: i) flexibility (it can be tuned for every particular
application); ii) accuracy of the designed approach at least the same as of Bayesian approach; iii) there
are no assumptions on likelihood distribution (in comparison to approaches based on credible or confidence
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intervals). Although the scoring method does not in general provide probabilities as output (which is a
disadvantage), it distinguishes the relative strengths of having different numbers of features.

Automated methods for selecting a weighting scheme and choosing a discount function are topics for
future research.
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2.5 Methods: QD Work-flow

We have described methods for modeling the distribution of characteristics and performing inference with
the models. Next we indicate as to how the methods can be incorporated into the work-flow of the QD
examiner. We begin with the procedure laid down in the ASTM document Standard Guide for Examination
of Handwritten Items [7] that lists steps that must be followed. It can be regarded as representing the
knowledge engineering necessary for an expert system. For the validation purpose, the standard procedure
has been vetted and accepted by the FDE community.

Following the standard procedure, the examiner often needs to make several decisions, since every case
has special needs, e.g., ransom notes could be written by multiple writers thus requiring comparison of
document sub-parts, with historical manuscripts different writers may be more similar to each other than
with contemporary writers thus requiring recalibration of individualizing characteristics [13].

2.5.1 Standard Work-Flow

The standard work-flow for the examination of handwritten items [7] was given in Section 2.1.1. It involves
making several decisions and item comparisons, which need not be sequential. We annotate steps in the
standard work-flow by indicating as to where existing and future computational tools can be useful.

2.5.2 Use of Probabilistic Methods

Methods such as those developed in this research can be used in several steps of the QD process. They are
indicated in the pseudocode given in Algorithm 6.

Algorithm 6 Comparison of handwritten items with statistical tools

1: Determine Comparison Type:
2: Q v Q (no suspect or determine no. of writers)
3: K v K (to determine variation range)
4: K v Q (to determine/repudiate writership)
5: for each Q or K do
6: Quality: determine visually or by automatic detection of noise.
7: Distortion: detect manually or by use distortion measures.
8: Type determination: manually or by automatic classification.
9: Internal consistency: within document, e.g., multiple writers.

10: Determine range of variation: compare subgroups.
11: Identify individualizing characteristics: those with low probability.
12: end for
13: for each Comparison do
14: Comparability: Both of same Type (Step 8).
15: Comparison: Determine likelihood ratio (LR) based on characteristics and adequacy.
16: Form Opinion: by quantizing LR or probability of identification.
17: end for

Note that statistical models of characteristics such as those discussed in Section 2.3 are used in Step 11
for choosing individualizing characteristics. They are also used in Step 15 in computing the likelihood ratio
as discussed in Section 2.4.2. Statistical models of type (handprint or cursive) discussed in Appendix ??
can be used in Step 8. Statistical models involving quantity of comparisons, called adequacy, can be used in
Step 16. In fact statistical models can be usefully developed for all the remaining steps as well.

2.6 Conclusions

The principal conclusions from this research are:
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I) Statistical characterization of handwriting characteristics can be useful to assist the QD examiner in
the examination of handwritten items. Particularly in determining individuallizing characteristics and
in expressing a quantitative opinion.

II) Since probability distributions of handwriting characteristics involve too many parameters, even for
few letter combinations such as th and and, the complexity can be handled using probabilistic graphical
models (PGMs) which are either directed (Bayesian networks) or undirected (Markov random fields).
The PGMs can be learnt from a database of handwriting characteristics using new algorithms proposed.

III) The PGMs can be used to

• Determine the rarity (inverse of probability) of given characteristics. The probability of random
correspondence of an input print in a database of size n can be determined. The measure can be
used to determine as to what extent a given set of characteristics are useful in individualizing.

• Rarity can be combined with a distribution of similarity to determine a likelihood ratio for iden-
tification. The likelihood ratio can be mapped to a nine-point scale.

IV) Software interfaces for creating databases of handwriting characteristics for different commonly occur-
ring letter combinations have been developed.

V) A dataset of handwritten and written by over 1,000 writers, together with their characteristics and
probability, has been made publicly available at http://www.cedar.buffalo.edu/ srihari/cursive-and and
at http://www.cedar.buffalo.edu/ srihari/handprint-and

VI) An automatic method for determining handwriting type was introduced. It classifies a full page with
92% accuracy. It can be further improved for use at the word level.

VII) Statistical methods can be used in the work-flow of the FDE. These are the steps where the FDE
isolates individualizing characteristics and when he/she expresses an opinion.
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2.7 Implications for policy and practice

We have proposed methods for constructing probabilistic models for several steps in the QD examination
process for handwritten items. Nearly every step in the process requires human judgement. Tools such
as those indicated in this research will benefit the QD examiner in associating quantitive measures with
each step. They will make it possible to associate probabilities with conclusions analogous to other forensic
domains such as DNA. There will be lesser criticism of examiner bias when quantitative methods are used.
Since many of these probabilities are likely to be very large or very small they will not take away from the
QD examiner expressing strong opinions about individualization or exclusion.

Methods developed will make it feasible to repeat the compilation as new sample sets become available;
which is important since handwriting characteristics of the general population can be expected to change in
time, e.g., less time is spent in the schools on teaching penmanship in favor of keyboarding skills. Charac-
teristics specified by QD examiners for other languages and scripts can also benefit from the methods. We
have only considered a handwriting of th and and in this research. Such data will have to be collected for
more letter combinations so that the results become more applicable.

Methods developed in this research have applications beyond QD examination. Statistical formulations
such as those for determining rarity and opinion can be useful in other forensic domains, particularly in
other areas of impression evidence such as latent prints, footwear marks, etc. Algorithms for Bayesian and
Markov structure learning have wide applications beyond the forensic sciences.

2.8 Implications for further research

Advances are needed in all areas described: data preparation, model construction, efficient algorithms for
inference and software tools to integrate results into the QD work-flow.

I) Data sets of more letter combinations needs to be extracted from handwriting samples and models
constructed.

II) Since the probability specification involves the evaluation of a large number of parameters, we have
described how probabilistic graphical models can be useful. Their automatic learning is important and
this area of machine learning needs further exploration.

III) Inference algorithms become quickly intractable. Approximate inference methods need to be developed.

IV) The algorithms need to become software tools for the QD examiner.

2.9 Dissemination

2.9.1 Publications

The following papers were published:

I) G. R. Ball and S. N. Srihari, “Statistical Characterization of Handwriting Characteristics Using Au-
tomated Tools” in Proceedings Document Recognition and Retrieval (DRR XVIII), SPIE Conference,
San Francisco, CA, January 27, 2011. The paper discusses the need for statistical characterization.

II) G. R. Ball, D. Pu and S. N. Srihari, “Determining Cursive or Printed Nature of Handwriting Samples,”
in Proceedings International Graphonomics Society (IGS) Conference, Cancun, Mexico, June 2011.
Evaluation of a preprocessing step already incorporated into CEDAR-FOX.

III) S. N. Srihari,“Evaluation of Rarity of Handwriting Formations,” in Proceedings International Confer-
ence on Document Analysis and Recognition (ICDAR), Beijing, China, September 2011.

IV) Y. Tang, S. N. Srihari and H. Srinivasan, “Handwriting Individualization Using Distance and Rarity,”
in Proceedings Document Recognition and Retrieval XIX, San Jose, CA, January 2012.
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V) K. Das, S. N. Srihari and H. Srinivasan,“Questioned Document Workflow for Handwriting with Auto-
mated Tools,” in Proceedings Document Recognition and Retrieval XIX, San Francisco, CA, January
2012.

VI) S. N. Srihari and K. Singer, “Role of Automation in the Examination of Handwritten Items,” in
Proceedings International Conference on Frontiers in Handwriting Recognition (ICFHR), Bari, Italy,
September 2012. This paper has been invited to appear in the Pattern Recognition journal.

VII) D. Kovalenko and S. N. Srihari, “On Methods for Incorporating Evidences into Posterior Scoring of
Hypotheses”, in Proc. Int. Conf. Pattern Recognition, Tsukuba, Japan, Nov. 2012.

VIII) Y. Tang and S. N. Srihari. “An Efficient Algorithm for Learning Bayesian Networks for Multinomials,”
in Proc. Int. Conf. Pattern Recognition, Tsukuba, Japan, Nov. 2012.

IX) Y. Tang and S. N. Srihari, “Learning Bayesian Networks for Likelihood Ratio Computation,” in Proc.
Int. Workshop on Computational Forensics, Tsukuba, Japan, Nov, 2012.

X) S. N. Srihari, D. Kovalenko, Y. Tang and G. R. Ball, “Combining Evidence using Likelihood Ratios
in Writer Verification,” in Proceedings Document Recognition and Retrieval XIX, San Francisco, CA,
February 2013.

2.9.2 Presentations

The following presentations were made:

I) The PI presented part of this work in the ICDAR award talk in Beijing, China in September 2011.

II) The PI presented part of this work as an invited talk at the Evaluating the Probability of Identification
in the forensic sciences.

III) Two papers were presented at the SPIE Document Recognition and Retrieval conference in San Fran-
cisco in January 2012. The first of these is on work-flow in handwriting comparison and the role of
automated tools within the work-flow. The second is on using distance and rarity in handwriting
comparison.

IV) The PI presented part of this work as an invited talk “Evaluating the probability of Identification in
the forensic sciences” at the International Conference on Handwriting Recognition in Bari, Italy in
September 2012. This paper has been invited to appear in the Pattern Recognition journal.

V) A paper coauthored by Sargur Srihari and Kirsten Singer was presented as a submitted paper at the
International Conference on Handwriting Recognition in Bari, Italy in September 2012.

VI) Two papers will be presented at the AAFS annual meeting in Washington DC in February 2013.

2.9.3 Students

I) Yi Tang completed his doctoral dissertation titled Likelihood Ratio Methods in Forensics in July 2012.

II) Dmitry Kovalenko did a one-year Fulbright under this research effort.
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2.11 Appendix 1: Handwriting sample source

The handwriting sample set was collected by us in 1999 [73]. This dataset consists of 4701 handwritten
documents where 1567 writers wrote the CEDAR letter exactly three times each. The CEDAR letter has
content designed to contain 156 words which include all characters (letters and numerals), punctuation, and
distinctive letter and numeral combinations (ff, tt, oo, 00). In particular, this document set out to contain
each letter of the alphabet in capital form at the initial position of a word and in lowercase form in the
initial, middle, and terminal locations in a word (a minimum of 104 forms of each letter). The vocabulary
size is 124 (that is, 32 of the 156 words are duplicate words, mostly stop words such as the, she, etc.). The
letters were written three times in each writers most natural handwriting using plain unlined sheets with a
medium black ball-point pen. The repetition was to determine, for each writer, the variation of handwriting
from one writing occasion to the next. The samples are scanned at 300 dpi and 8-bit grayscale.

In preparing the data set, our objective was to obtain a set of handwriting samples that would capture
variations in handwriting between and within writers. This meant that we would need handwriting samples
from multiple writers, as well as multiple samples from each writer. The handwriting samples of the sample
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population should have the following properties (loosely based on [39]): (i) they are sufficient in number to
exhibit normal writing habits and to portray the consistency with which particular habits are executed, and
(ii) for comparison purposes, they should have similarity in texts, in writing circumstances and in writing
purposes.

Several factors may influence handwriting style, e.g., gender, age, ethnicity, handedness, the system of
handwriting learned, subject matter (content), writing protocol (written from memory, dictated, or copied
out), writing instrument (pen and paper), changes in the handwriting of an individual over time, etc. For
instance, we decided that document content would be such that it would capture as many features as possible.
Only some of these factors were considered in the experimental design. The other factors will have to be part
of a different study. However, the same experimental methodology can be used to determine the influence
factors not considered.

There were two design aspects to the collection of handwriting samples: content of the handwriting
sample and determining the writer population.

2.11.1 Source Document

A source document in English, copied by each writer, is shown in Figure 2.26(a). It is concise (156 words)
and complete in that it captures all characters (alphabets and numerals) and certain character combinations
of interest. In the source document, each alphabet occurs in the beginning of a word as a capital and a small
letter and as a small letter in the middle and end of a word (a total of 104 combinations). The number of
occurrences in each position of interest in the source text is shown in Table 2.10(a). In addition, the source
document also contains punctuation, all ten numerals, distinctive letter and numeral combinations (ff, tt,
oo, 00), and a general document structure that allows extracting macro-document attributes such as word
and line spacing, line skew, etc. Forensic literature refers to many such documents, including the London
Letter and the Dear Sam Letter [58]. We set out to capture each letter of the alphabet as capital letters
and as small letters in the initial, middle, and terminal positions of a word. This creates a total of 104
possibilities (cells) for each of the 26 letters in the alphabet. A measure of how ”complete” the source text
is is given by the expression: 104−No.ofemptycells

104 . While our source text scores 99% on this measure, the
London Letter scores only 76%. Each participant (writer) was required to copy-out the source document
three times in his/her most natural handwriting, using plain, unruled sheets, and a medium black ballpoint
pen provided by us. The repetition was to determine, for each writer, the variation of handwriting from one
writing occasion to the next.

Table 2.10: CEDAR Letter Data Attributes: (a) positional frequency of letters in text, and (b) demographics
of writers.
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!
(a)

!
(b)

Figure 2.26: Handwriting Source: (a) document copied by writers includes all alphabets, and (b) a digitally scanned
handwritten sample provided by a writer.
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2.11. APPENDIX 1: HANDWRITING SAMPLE SOURCE BIBLIOGRAPHY

2.11.2 Writer Population

The writer population was representative of the U.S. population. Statistical issues in determining the writer
population were: the number of samples needed to make statistically valid conclusions and the population
distribution needed to make conclusions that apply to the US population, which are issues in the design of
experiments [50].

Randomness

If the samples are random, then every individual in the US should have an equal chance of participating
in the study. The samples were obtained by contacting participants in person, by mail, by advertising the
study with the use of flyers and internet newsgroups, and by manning a university booth. For geographic
diversity, we obtained samples by contacting schools in three states (Alaska, Arizona, and New York) and
communities in three states (Florida, New York, and Texas) through churches and other organizations.

Sample Size

The sample population should be large enough to enable drawing inferences about the entire population
through the observed sample population. The issue of large enough is related to sampling error, the error
that results from taking one sample instead of examining the whole population, i.e., how close is an estimate
of a quantity based on the sample population to the true value for the entire population?

Public opinion polls that use simple random sampling specify using a sample size of about 1100, which
allows for a 95% confidence interval, with a margin of error of 0.03 [73]. Higher precision levels would entail
a larger number of samples. Our database has a sample size of about 1500, and our results are therefore
subject to such a margin of error.

The sample population should be representative of the US population. For instance, since the US pop-
ulation consists of an (approximately) equal number of males and females, it would be unwise to perform
the study on a sample population and expect the conclusions of the study to apply to the entire US pop-
ulation consisting of males and females (especially in the absence of any scientific evidence that proves or
disproves the association between handwriting and gender). The sample was made representative by means
of a stratified sample with proportional allocation [50].

We divided the population into a pre-determined number of sub-populations, or strata. The strata do not
overlap, and they constitute the whole population so that each sampling unit belongs to exactly one stratum.
We drew independent probability samples from each stratum, and we then pooled the information to obtain
overall population estimates. The stratification was based on US census information (1996 projections).

Proportional allocation was used when taking a stratified sample to ensure that the sample reflects
the population with respect to the stratification variable and is a miniature version of the population. In
proportional allocation, so called because the number of sampled units in each stratum is proportional
to the size of the stratum, the probability of selection is the same for all strata. Thus, the probability
that an individual will be selected to be in the sample is the same as in a simple random sample without
stratification, but many of the bad samples that could occur otherwise cannot be selected in a stratified
sample with proportional allocation. The sample size again turns out to be about 1000 for a 95% confidence
interval, with a margin of error of 0.03.

A survey designed as above would allow drawing conclusions only about the general US population and
not any subgroup in particular. In order to draw any conclusions about the subgroups, we would need
to use allocation for specified precision within data. This would entail having 1, 000 in each cell of the
cross-classification.

From the census data, we obtained population distributions pertaining to gender, age, ethnicity, level of
education, and country of origin; we also obtained a distribution for handedness from [29]. Based on this
information, a proportional allocation was performed for a sample population of 1000 across these strata.
Among these variables, only gender, age, and ethnicity can be considered as strata (by definition). Due to
the limited amount of census data on other combinations, we were unable to stratify across handedness and
level of education.
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Each writer was asked to provide the following writer data, enabling us to study the various relationships:
gender (male, female), age (under 15 years, 15 through 24 years, 25 through 44 years, 45 through 64
years, 65 through 84 years, 85 years and older), handedness (left, right), highest level of education (high
school graduate, bachelors degree and higher), country of primary education (if US, which state), ethnicity
(Hispanic, white, black, Asian/Pacific Islander, American Indian/Eskimo/Aleut), and country of birth (US,
foreign).

The details (actual/target) of the distribution for a sample size of 1568 writers are given in Table 2.10(b).
The strata are sometimes under-represented (actual < target) or over-represented (actual> target). Param-
eters considered in addition to strata shown in Table 2.10(b) are handedness and country of origin - Male:
handedness (right, left): 382/429, 61/61, and country of origin (US, foreign): 373/451, 71/39; Female:
handedness (right, left): 1028/461, 95/49, and country of origin (US, foreign): 1026/469, 98/41.

There may be other relevant strata that could have been considered, such as the system of writing
learned (e.g., the Palmer method), country in which writing was learned, etc. We were constrained by
the limited information we have on these distributions. Moreover, a perfect sample (a scaled-down version
of the population that mirrors every characteristic of the whole population) cannot exist for complicated
populations. Even if it did exist, we would not know it was a perfect sample without measuring the whole
population.
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2.12 Appendix 2: Tool for extracting image snippets

The transcript-mapping function of CEDAR-FOX [37] is useful to locate image snippets of interest. Screen-
shots of this function are given in Figure 2.27. Results can be filtered to get desired letter combination image
snippets.

(a) Interface to type transcript. (b) Display of words associated with images.

Figure 2.27: Transcript mapping function of CEDAR-FOX for extracting letter combinations from handwritten
pages: (a) window or an input text file, and (b) truth super-imposed on handwriting image.
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2.13. APPENDIX 3: COMPARISON OF TH MARGINALS WITH PREVIOUS WORK.BIBLIOGRAPHY

2.13 Appendix 3: Comparison of th marginals with previous work.

We provide here a comparison of the marginal distributions of the six characteristics of th given in Figure
2.9(b) with those give in [51]. Both sets of marginal probabilities are given in Table 2.11.

Table 2.11: Comparison of two marginal distributions

(a) Marginal probabilities of BNthin Figure 2.9(a)

Val. R L A C B S

0 0.23 0.69 0.41 0.53 0.11 0.09

1 0.37 0.05 0.44 0.28 0.1 0.61

2 0.16 0.006 0.16 0.008 0.49 0.02

3 0.24 0.08 - 0.18 0.29 0.05

4 - 0.17 - - - 0.22

(b) Marginal probabilities from [51]

Val. R L A C B S

0 0.78 0.275 0.18 0.715 0.375 0.015

1 0.015 0.32 0.66 0.105 0.11 0.32

2 0.055 0.025 0.16 0.01 0.105 0.14

3 0.15 0.17 - 0.17 0.41 0.315

4 - 0.21 - - - 0.21

2.13.1 Chi-squared Test Short Description

Chi-square test is a statistical test commonly used in comparing observed data with data we would expect
to obtain, according to a certain specific hypothesis. The formula for Chi-square test is:

χ2 =
∑

(Oi − Ei)2
/Ei

where Oi the observed value and Ei is expected data. So chi-square is the sum of the squared difference
between observed and expected data in all possible categories.

By given significance level α and the degree of freedom d = n − 1, we have rejection region: W =
[0, χ2

1−α/2(n−1)]∪[χ2
α/2(n−1),+∞]. If the calculated value of χ2 lies in this region, we reject the hypothesis,

else we accept the hypothesis.

2.13.2 Results of χ2 Tests

For R

Hypothesis H0:The R’s distribution between two sources agree.

The degree of freedom d=n-1=3, χ2 = (0.23−0.78)2

0.78 + (0.37−0.015)2

0.015 + (0.16−0.055)2

0.055 + (0.24−0.15)2

0.15 = 9.04182
and as we see χ2

0.05(3) = 7.815, so this value lies in W, we reject the hypothesis, they don’t fit each other;

For L

Hypothesis H0:The L’s distribution between two sources agree.

The degree of freedom d=n-1=4, χ2 = (0.69−0.275)2

0.275 + (0.05−0.32)2

0.32 + (0.006−0.025)2

0.025 + (0.08−0.17)2

0.17 + (0.17−0.21)2

0.21 =
0.925976 and as we see χ2

0.05(4) = 9.488, χ2
0.95(4) = 0.711, so this value lies outside W, we accept the hy-

pothesis, they fit each other;

For A

Hypothesis H0:The A’s distribution between two sources agree.

The degree of freedom d=n-1=2, χ2 = (0.41−0.18)2

0.18 + (0.44−0.66)2

0.66 + (0.16−0.16)2

0.16 = 0.367 and as we see
χ2

0.05(2) = 5.991, χ2
0.95(2) = 0.103, so this value lies outside W, we accept the hypothesis, they fit each

other;;

For C

Hypothesis H0:The C’s distribution between two sources agree.
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The degree of freedom d=n-1=3, χ2 = (0.53−0.715)2

0.715 + (0.28−0.105)2

0.105 + (0.008−0.01)2

0.01 + (0.18−0.17)2

0.17 = 0.340855
and as we see χ2

0.05(3) = 7.815, χ2
0.95(3) = 0.352, so this value lies in W, we reject the hypothesis, they don’t

fit each other;

For B

Hypothesis H0:The B’s distribution between two sources agree.

The degree of freedom d=n-1=3, χ2 = (0.11−0.375)2

0.375 + (0.1−0.11)2

0.11 + (0.49−0.105)2

0.105 + (0.29−0.41)2

0.41 = 1.63458
and as we see χ2

0.05(3) = 7.815, χ2
0.95(3) = 0.352, so this value lies outside W, we accept the hypothesis, they

fit each other;
The degree of freedom d=n-1=3;

For S

Hypothesis H0:The S’s distribution between two sources agree.

The degree of freedom d=n-1=4, χ2 = (0.09−0.015)2

0.015 + (0.61−0.32)2

0.32 + (0.02−0.14)2

0.14 + (0.05−0.315)2

0.315 + (0.22−0.42)2

0.42 =
1.0588 and as we see χ2

0.05(4) = 9.488, χ2
0.95(4) = 0.711, so this value lies outside W, we accept the hypothesis,

they fit each other;;

Choice of Sig-value

By selecting the significance level’s value of α = 0.1, we have 1− α = 90% possibility that our estimation is
correct.

2.13.3 Discussion of Results

Thus we have that four of the six distributions agree while two disagree. The correlation is not as strong as
we can expect due to several reasons:

• No distinction was made between cursive and hand-print in the th data. Their proportions in the two
data sets may be quite different.

• In [51] no attempt was made for the writers to be representative of the population. Our samples are
more representative.

• The characteristics of handwriting in the population may have changed over a period of 23 years.

• There were only 200 writers considered in [51] while 500 writers were considered here.

• Marginal probabilities may be less important than the joint probabilities in FDE. In [51] only the
marginal probabilities and a few joint probabilities of pairs of variables are given. In our method
marginal or any desired joint probability can be calculated.
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2.14. APPENDIX 4: AND EXAMPLES BIBLIOGRAPHY

2.14 Appendix 4: and examples

The images of and were extracted from the images of the CEDAR letter described in Appendix 1. There are
one- to five-samples of the word in one page of writing, with three pages per writer. In the following we give
some samples for cursive and handprint where for each image the characteristics entered by the document
examiner are given. The probability of the characteristic encoding is given in two ways: as determined by a
Bayesian network and as determined by assuming that the characteristics are independent. The highest and
lowest probability samples, ordered by the BN determined joint probability are given.
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2.14.1 Cursive

High probability cursive samples

Following are some high probability samples in the cursive data set. They are ordered by the joint probability
computed by the Bayesian network described in Section 2.3.2.

# Samples Writer
ID

Charac-
teristics

BN Joint Proba-
bility

Joint Probabil-
ity assuming in-
dependence

1 0584a 111022022 5.47e-003 5.06e-003

2 0584b 111022022 5.47e-003 5.06e-003

3 0584c 111022022 5.47e-003 5.06e-003

4 1127a 111022022 5.47e-003 5.06e-003

5 1127b 111022022 5.47e-003 5.06e-003

6 1127c 111022022 5.47e-003 5.06e-003

7 1274a 111022022 5.47e-003 5.06e-003

8 1284a 111022022 5.47e-003 5.06e-003

9 1360b 111022022 5.47e-003 5.06e-003

10 1364b 111022022 5.47e-003 5.06e-003

11 1490c 111022022 5.47e-003 5.06e-003

12 1491a 111022022 5.47e-003 5.06e-003

13 1491b 111022022 5.47e-003 5.06e-003

14 0715b 211022022 5.10e-003 6.23e-003

15 0815c 211022022 5.10e-003 6.23e-003

16 0896a 211022022 5.10e-003 6.23e-003

17 0896c 211022022 5.10e-003 6.23e-003

18 0359a 211022022 5.10e-003 6.23e-003

19 0577a 211022022 5.10e-003 6.23e-003

72

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.
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Low probability cursive samples

Following are some low probability cursive samples.

# Samples Writer
ID

Charac-
teristics

BN Joint Proba-
bility

Joint Probabil-
ity assuming in-
dependence

3055 0967b 112432112 9.23e-008 1.42e-005

3056 1154c 342422322 7.90e-008 1.43e-005

3057 1306c 312432022 7.41e-008 9.58e-006

3058 1042a 042423112 5.32e-008 1.29e-006

3059 0131c 130101322 4.85e-008 1.42e-007

3060 1098b 300203302 4.80e-008 2.65e-007

3061 0293a 020133132 3.51e-008 7.13e-008

3062 1529c 132332022 3.27e-008 3.88e-007

3063 1530a 132332022 3.27e-008 3.88e-007

3064 1530b 132332022 3.27e-008 3.88e-007

3065 1530c 132332022 3.27e-008 3.88e-007

3066 0058c 142432122 2.35e-008 1.42e-005

3067 1200a 302402322 2.28e-008 1.04e-005

3068 1200b 302402322 2.28e-008 1.04e-005

3069 1200c 302402322 2.28e-008 1.04e-005

3070 0042c 142403222 1.53e-008 2.00e-006

3071 0636b 002432212 2.50e-009 3.10e-006

3072 0603a 342433102 1.24e-009 8.59e-007

3073 0129a 342431242 3.26e-010 4.81e-008

3074 1205b 242433342 1.63e-010 9.30e-007

3075 1205c 222433342 1.61e-010 1.31e-007
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2.14.2 Hand-print

High probability hand-print samples

Following are some high probability samples in the hand-print data set. They are ordered by the joint probability
computed by the Bayesian network described in Section 2.3.2.

# Samples Writer
ID

Charac-
teristics

BN Joint Proba-
bility

Joint Probabil-
ity assuming in-
dependence

1 0008a 010110112 1.67e-002 2.22e-002

2 0120a 010110112 1.67e-002 2.22e-002

3 0183a 010110112 1.67e-002 2.22e-002

4 0183b 010110112 1.67e-002 2.22e-002

5 0183c 010110112 1.67e-002 2.22e-002

6 0196a 010110112 1.67e-002 2.22e-002

7 0203b 010110112 1.67e-002 2.22e-002

8 0205c 010110112 1.67e-002 2.22e-002

9 0209a 010110112 1.67e-002 2.22e-002

10 0209b 010110112 1.67e-002 2.22e-002

11 0209c 010110112 1.67e-002 2.22e-002

12 0214a 010110112 1.67e-002 2.22e-002

13 0214b 010110112 1.67e-002 2.22e-002

14 0240b 010110112 1.67e-002 2.22e-002

15 0240c 010110112 1.67e-002 2.22e-002

16 0258a 010110112 1.67e-002 2.22e-002

17 0641a 010110112 1.67e-002 2.22e-002

18 0693a 010110112 1.67e-002 2.22e-002

19 0693b 010110112 1.67e-002 2.22e-002
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Low probability hand-print samples

Following are some low probability hand-print samples.

# Samples Writer
ID

Charac-
teristics

BN Joint Proba-
bility

Joint Probabil-
ity assuming in-
dependence

1115 0158a 450211300 9.23e-009 4.03e-010

1116 0158b 450211300 9.23e-009 4.03e-010

1117 0158c 140211300 5.35e-009 1.72e-008

1118 0698c 140211300 5.35e-009 1.72e-008

1119 0548a 130124532 5.24e-009 5.52e-009

1120 0598a 130323332 5.08e-009 4.80e-007

1121 0598b 130323332 5.08e-009 4.80e-007

1122 0598c 130323332 5.08e-009 4.80e-007

1123 1110b 453123332 3.56e-009 2.15e-008

1124 0275b 313423122 2.28e-009 3.13e-006

1125 0801b 353423002 2.11e-009 3.37e-007

1126 0103a 353423322 1.34e-009 1.84e-006

1127 0103b 353423322 1.34e-009 1.84e-006

1128 0103c 353423322 1.34e-009 1.84e-006

1129 0275a 313323122 1.31e-009 1.80e-006

1130 0107a 353423532 8.38e-010 7.32e-007

1131 0107b 353423532 8.38e-010 7.32e-007

1132 0107c 353423532 8.38e-010 7.32e-007

1133 1233b 333323332 6.69e-010 5.88e-007

1134 1110c 453124532 4.39e-010 4.53e-010

1135 0629a 353423522 2.85e-010 3.90e-007
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2.15 Appendix 5: Type Determination

Comparability is a requirement in QD examination. If it can be performed automatically, the data collection process
can be speeded-up. We describe here such a method which also assigns a probability to whether a handwritten item
is cursively written or hand-printed. This work described in [11] has been incorporated into the CEDAR-FOX system
[78, 74]. Formal analysis of its performance was made possible with ground truth over entire documents provided by
QD examiners.

2.15.1 Characteristics of Type

Character connectivity is useful to differentiate type. If most characters within each word are connected, the item is
cursive. If most are disconnected, it is hand printed. Mixed type is characterized by the term running hand print,
but often grouped with cursive since connected characters are useful in analysis. To capture the idea of whether or
not most characters are connected, we identified several characteristics that could be automatically determined.

• Discreteness f1: The presence of disconnected characters in a handwritten item is given by the ratio of Isolated
Character Count (ICC) and Word Count (WC). ICC is the cardinality of the set of groups of connected
components recognized as individual characters. WC is the cardinality of the set of words in a given document.
We use WC simply as a way to normalize ICC; thus, the feature we found to best capture the intuitive document
examiner feature is the ratio f1 = ICC

WC
.

• Loopiness f2: As cursive writing tends to have more loops present within each connected component, a second
feature considered is loopiness. We capture this with the ratio of interior to exterior contours. Due to the
complexity, this feature was not explored in depth.

To illustrate these characteristics, consider Figure 2.29 which shows two instances of the word several, one cursive
and the other hand-printed. In the cursive instance, there are two large connected components; one containing sev
and one containing eral: ICC = 0 and WC = 1, yielding f1 = 0. The hand-print instance, however, contains six
large connected components. Five are recognized as individual characters (s, e, v, e and r), giving a ratio of 5. Thus,
our hypothesis was that cursive documents would have overall very low ratios and hand printed documents would
have relatively high ratios. Even ideal cursive documents are likely to have some isolated characters (due to the
words a and I). To complicate matters, however, some spurious breaks often occur, even in predominantly cursive
documents. An example is the instance of the word enthusiasm which occurred in a predominantly cursive document
shown in Figure 2.29(c) . In this case, there are six connected components (en, t, hus, i, as, m). Since three of these
are individual characters in a single word, f1 = 3/1.

!
(a)

!
(b)

!
(c)

Figure 2.28: Examples of word type: (a) cursive: f1 = 0, f2 = 2.5,(b) hand-printed: f1 = 5, f2 = 0.5, and
(c) predominantly cursive: f1 = 3, f2 = 1.33.

Approximating WC

In order to process arbitrary documents which lack ground truth, we first approximate the WC. The document is
first segmented into lines and then into a set of numbered words. To segment lines, a stroke tracing method is
used to intelligently segment the overlapping components. Slope and curvature information of the stroke is used to
disambiguate the path of the stroke at cross points. Once the overlapping components are segmented into strokes, a
statistical method is used to associate the strokes with the appropriate lines. This method is capable of disentangling
lines which collide by splitting and associating the correct character strokes to the appropriate lines [45]. To segment
lines into words, a gap metric approach is used [38]; it is designed to separate a line of unconstrained (written in a
natural manner) handwritten text into words. Both local and global features are used to mimic human cognition.
Local features are distance between a pair of components, distance between neighboring components, width of left
and right components, and height of the left and right components. Global features include ratio of the number of
exterior contours and the number of interior contours, the average height of grouped components, average width of
grouped components, and average distance between components. Two distance metrics are computed and averaged
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depending on the circumstancesthe first metric is either the bounding box or minimum run-length distance and the
second is the convex hull distance. The actual classification based on these features is done using a three-layer neural
network.

!
(a)

!
(b)

!
(c)

!
(d)

Figure 2.29: Determination of cursive (a) and hand print (b) within the CEDAR-FOX system. Screenshots
in (c) and (d) show result on a continuous scale as predominantly cursive and predominantly hand-printed.

Determining ICC

Utilizing a character model recognizer, the full preprocessed page image is separated into its connected components.
Each connected component is then passed to a character recognition algorithm which determines if the connected
component is likely to consist of a single character. The features used for this determination are the Gradient,
Structural, Concavity (GSC) features, a 512-dimensional feature vector, which are used in automatic character
recognition for interpreting handwritten postal addresses. We extract local contour features based on the pixel
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gradients present in an image. A gradient map, i.e., gradient magnitude and direction at every pixel, is computed;
this map is thresholded to avoid responses to noise and spurious artifacts, the map is then partitioned coarsely.
Character contours are encoded by quantizing gradient directions into a few representative direction bins. This
method does not require that images be normalized to a fixed grid-size before feature extraction. The features were
used to train a 2-layer neural network classifier [79].

2.15.2 Dataset

The dataset used for our experiments is the entire CEDAR letter dataset described in Appendix 1. The documents in
this data set were examined and tagged by two QD examiners with a Boolean flag as either hand printed or not hand
printed. The not hand printed group consists of mainly cursive documents with a few questionable running hand
print documents. This feature was created by the document examiners as it captured the sets information necessary
for their work. An example of a predominantly cursive and a hand print document is shown in Figure 2.29. The QD
examiners tagged 621 documents as hand printed with the remaining 4080 being cursive with a few running hand
print.

2.15.3 Type Distribution

We began by processing the CEDAR letter dataset in its entirety, generating our measurement on all documents to
determine whether or not it had good predictive value. That is, we wanted to see how well the IsolatedCharacter-
Count/WordCount feature correlated with the Boolean feature value provided by the QD examiners.

!
(a) (b)

Figure 2.30: Histogram of binned feature f1 (left) and representative Gamma distributions (right) with their
thresholds.

The ratio had a range of 0.10 to 6.86 over all 4701 documents. Of the hand printed documents, the range was
0.20 to 6.36 with a mean of 2.14. Cursive documents have values ranging from 0.10 to 3.05 with a mean of 0.57.
Figure 2.30 is a stacked histogram of (99% of the data is included; the few points with values > 3.2 are omitted for
space) as well as the data modeled with Gamma distributions. We determined a threshold by using the midpoint
of the means of the two subsets (cursive and hand print) in the training set. The mean values of the cursive and
hand print training sets were found to be 0.57 and 2.08 respectively. The threshold was set at 1.33. We performed
a second experiment by modeling the two subsets with two Gamma distributions and choosing the class with higher
probability; for the experiment, we approximated the distributions using Gaussian distributions.

2.15.4 Results

We performed experiments both based on a threshold and Gaussian model. The mean values of the cursive and hand
print training sets were found to be 0.57 and 2.08 respectively. The threshold was set at 1.33. 1775 documents in
the cursive validation set were found to have values below the threshold, yielding the correct classification of 90.8%.
375 of the hand printed validation set were found to have values above the threshold, yielding correct classification
of 92.0% of the documents. Overall, this led to the correct classification of an average of 94.5%. The Gaussian
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experiment yielded very similar results with performance improving on the hand printed set to 95.0% and decreasing
slightly to 90.5% on the cursive set.

2.15.5 Conclusions

In conclusion, feature f1 identifies writing type correctly roughly 92.8% of the time. The method needs to be further
evaluated at the word level where a higher level of discrimination will be needed. Incorporation of the f2 feature will
likely improve classification performance. Such a tool can eventually be incorporated into the ground-truthing tool
described in Section 2.2.5 so that the menu of characteristics can be automatically displayed.
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2.16 Appendix 6: Mapping Likelihood Ratio to Opinion Scale

We describe below a method for converting a likelihood ratio between the identification and exclusion hypotheses
into a discrete opinion on a nine-point scale. It has been implemented previously in the CEDAR-FOX system using
automatically determined characteristics [40]. The distance space distribution is modeled parametrically using gamma
and Gaussian densities obtained by comparing ensembles of pairs of documents. Experiments and results show that
with increase in information content from just a single word to a full page of document, the accuracy of the model
increases.

The formulation of strength of evidence is parameterized based on two factors: (i) the amount of information
compared(I) and (ii) whether the documents being compared have the same or different content(C). Values that I
can take is discretized as one of word,line,multiple lines,half page,full page. Words of different length (short,medium
and long) and words made of purely numbers were all considered as belonging to the type word. The two different
values C can take on are Same Content,Different Content.

The value of I can be automatically found during line and word segmentation. The automatic line segmentation
method is discussed in [5] and for word segmentation an artificial neural network decides whether a gap between
two connected components is a word gap or not. Using the number of lines L and the number of words in each line
Wi i ∈ {1 . . . L}, the value of I is decided as: [L = 1,W1 = 1⇒ I = word], [L = 1,W1 > 1⇒ I = line], [L > 1 & L <
4 ⇒ I = multiple-lines], [L ≥ 4 & L < 8 ⇒ I = half-page], [L ≥ 8 ⇒ Ifull-page]. Similarly for the value of C, if the
number of common words between the two documents is greater than 80% of the number of words in the smaller
document(in terms of number of lines), then the value of C is “Same Content”, or else it is different content.

Mathematical formulation

For each possible pairs of settings for I and C, the distribution of the LLR as observed on a validation set of ensemble
of pairs is obtained. This ensemble of pairs consists of both, pairs from same as well as from different writers. The
number of such pairs from the same and different writers are kept the same to avoid a bias in the distribution of
LLR. Let Dic represent the distribution of LLR for I = i and C = c. Further, let DS

ic represent the subset of Dic

where the samples truly belonged to the same writer and let DD
ic represent the subset of Dic where the samples truly

belonged to different writers. It is clear that Dic = DS
ic ∪DD

ic . Here it is important to note that the distribution DS
ic

and DD
ic will be different for different sets of features used. For eg., the distribution can be further parameterized by

a third variable that measures which feature set was used (macro only or macro+micro). We leave the discussion of
inclusion of this third parameter to the experiments and results section. Using the distributions DS

ic and DD
ic , and

for any given value of LLR L, two percentages can now be obtained (i) PS
ic: Percentage of samples in DS

ic that had
LLR values > L and (ii) PD

ic : Percentage of samples in DD
ic that had LLR values > L. To be verbose, PS

ic represents
the percentage of same writer cases in the validation set that had LLR values even larger than the one for this. This
implies that PS

ic represents the percentage of same writer cases in the validation set that were stronger than the
current case. Similarly, PD

ic represents percentage of different writer cases that were weaker than the current case.
Mathematically, they are defined as in Eq. 2.35.

PS
ic =

|DS
ic > L|
|DS

ic|
× 100

PD
ic=

|DD
ic>L|
|DD

ic
|
×100 (2.35)

where | · | represents cardinality. It is clear that PS′
ic = 100−PS

ic will represent that percentage of samples in DS
ic that

had LLR values ≤ L and similarly we define PD′
ic = 100 − PD

ic . PS′
ic and PD′

ic represent the complement of PS
ic and

PD
ic respectively.

The sign(+ve,-ve) of the LLR L between a pair of documents makes a decision of same or different writer. The
strength of evidence is based on this decision. The scale 1 · · · 9 for a particular pair of document can be obtained
using either PS

ic (if L > 0) or PD′
ic (if L < 0). (In both cases, we are evaluating the percentage of samples that were

stronger than the current case.) These two values can be calculated using Equation 2.35 provided i and c are known.
The beginning of this section described the method to calculate these i and c. If the LLR L is +ve, then the opinion
scale is in the range 1-5 and in the range 5-9 if it is -ve. Note that, in either cases, the scale “5-No conclusion” can
be obtained. Table 2.12 summarizes the rules for obtaining the nine-point scale for +ve and -ve LLR values.
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Table 2.12: Rules for obtaining an opinion on the 9 point scale

(a) LLR L is +ve

Scale Opinions for same PS
ic

1 Identified as same 0.00 ∼ 22.21

2 Highly probably same 22.22 ∼ 44.43

3 Probably same 44.44 ∼ 66.65

4 Indicating same 66.66 ∼ 88.87

5 No conclusion 88.88 ∼ 100.00

(b) LLR L is -ve

Scale Opinions for different PD′
ic

5 No conclusion 88.88 ∼ 100.00

6 Indicating different 66.66 ∼ 88.87

7 Probably different 44.44 ∼ 66.65

8 Highly probable different 22.22 ∼ 44.43

9 Identified as different 0.00 ∼ 22.21
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