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Quantitative matching of forensic evidence
fragments using fracture surface topography
and statistical learning

Geoffrey Z. Thompson1, Bishoy Dawood2, Tianyu Yu2, Barbara K. Lograsso3,
John D. Vanderkolk4, Ranjan Maitra 1, William Q. Meeker 1 &
Ashraf F. Bastawros 2

The complex jagged trajectory of fractured surfaces of two pieces of forensic
evidence is used to recognize a “match” by using comparativemicroscopy and
tactile pattern analysis. The material intrinsic properties and microstructures,
as well as the exposure history of external forces on a fragment of forensic
evidence have the premise of uniqueness at a relevant microscopic length
scale (about 2–3 grains for cleavage fracture), wherein the statistics of the
fracture surface become non-self-affine. We utilize these unique features to
quantitatively describe the microscopic aspects of fracture surfaces for for-
ensic comparisons, employing spectral analysis of the topographymapped by
three-dimensional microscopy. Multivariate statistical learning tools are used
to classify articles and result in near-perfect identification of a “match” and
“non-match” among candidate forensic specimens. The framework has the
potential for forensic application across a broad range of fractured materials
and toolmarks, of diverse texture and mechanical properties.

Consider the example of a crime scenewhere investigators have found
the tip of a knife or other tool that appears to have broken off from the
rest of the object. Later, investigators recover a base that appears to
topographically match, as indicated in Fig. 1a, b and they wish to show
that the two pieces are from the same knife in order to use that evi-
dence later at trial. To this extent, the analyst comparison relies on
subjective pattern recognition methodologies. Scientific testimony
used in a criminal or civil trial must be “not only relevant but reliable”,
according to the Supreme Court decision Daubert v. Merrell Dow
Pharmaceuticals, Inc (1993). The application of this ruling forced a
reconsiderationof somepreviously acceptable forensic evidence and a
re-evaluation of the scientific validation of its premises and
techniques1. In 2009, The National Academy of Sciences issued a
report2 that evaluated the state of forensic science and concluded that,

…much forensic evidence—including, for example, bite marks
and firearm and toolmark identification—is introduced in

criminal trials without any meaningful scientific validation,
determination of error rates, or reliability testing to explain the
limits of the discipline2.

However, it should be noted that a considerable amount of prior
work has been done to provide a quantitative and scientific basis for
firearm and tool mark identification, for example, with the con-
secutive matching striae (CMS) method3–5. The report highlighted
the need to develop new methods that have meaningful scientific
validation and are accompanied by statistical tools to determine
error rates and the reliability of the methods. To that end, the
American Association for the Advancement of Science has published
reports on the state of fire investigation6 and latent fingerprint
examination7.

The proposed framework focuses on fracture matching, the
forensic discipline of determining whether two pieces came from
the same fractured object. The fracture mechanisms leave surface
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marks on both surfaces that could be utilized for matching frag-
ments. The basis for physical matching is the assumption that there
is an indefinite number of matches all along the fracture surface.
The irregularities of the fracture surfaces are considered to be
distinctive and may be exploited to individualize or distinguish
correlatedpairs of fracture surfaces8,9. Current forensic practice for
fracture matching involves visually inspecting the complex jagged
trajectory of fracture surfaces to recognize a match, either by an
examiner or even by a layperson on a jury. The process uses com-
parative microscopy and tactile pattern analysis8,10, where macro-
features on a pair of fracture fragments are correlated as demon-
strated in Fig. 1a, b. Previous research has supported that the
observed fracture patterns in metals are unique11,12 and that

inspection via a microscope of the fracture surfaces by examiners
can reliably validate matches13. However, experience, under-
standing, and judgment are needed by a forensic expert, to make
reliable examination decisions using comparative microscopy and
physical pattern match as indicated in Fig. 1b to identify correlated
macroscopic topological features. The comparative process relies
on subjective comparison without a statistical foundation, which
may be flawed, as the 2009 NAS report argues:

But even with more training and experience using newer tech-
niques, the decision of the toolmark examiner remains a sub-
jective decision based on unarticulated standards and no
statistical foundation for estimation of error rates2.

Along x-axis
Along y-axis

Fig. 1 | Association of forensic fragments and their fracture surface char-
acteristics. a Visual jigsaw match of the macroscopic crack trajectory at the
typical examination scale. b Physical pattern match with comparative micro-
scopy, with analyst focusing on macroscopic topological features. c 3D
representation of a pair of fracture surfaces, showing detailed topographic
features at the relevant comparison scale (∽20 grains), utilized in the current
work. The fracture surface shows a biased orientation of the low-frequency
texture in the direction of crack propagation, along the x-axis. d Height-height

correlation variation with the size of the correlation window, showing the
domain of the self-affine deformation and the deviation of the fracture surface
characteristics at higher length scales ( >50–70 μm), which could be used for
matching purposes. e For quantitative analysis of the fracture surface pairs, a
series of aligned topographical images were taken, relative to a reference
coordinate w.r.t. the right edge of the fractured article. A series of k = 9
topographical images with 75% overlap between successive images, rendering
three fully independent sequel images on the fracture surface.
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Indeed, the microscopic details of the non-contiguous crack
edges on the observation surface of Fig. 1a, b cannot always be directly
linked to a pair of fracture surfaces, except possibly by a highly
experienced examiner. There are many published studies and case
reports concerning fracture or patternmatching of different materials
such as rubber shoe soles, wood, glass, tape, paper, skin, fishing line,
cable, and, most commonly, metal14–29. However, at about one-tenth
the scale of Fig. 1b, the 3D microscopic details imprinted on the
topographical fracture surface of Fig. 1c carry considerable informa-
tion that could provide a quantitative forensic comparison with higher
evidentiary value. Forensically, glass and metal fracture surfaces have
been shown to have highly stochastic fracture-branches due to the
randomness of the microstructure and grain sizes11,30, with limited
prior attempts to quantitatively match two measured fracture surface
topographies13,16. It is therefore desirable to develop more objective
methods using quantitative measures that can be validated with less
human input for use in a criminal or civil trial.

In this work, we propose using the fractal nature of fracture sur-
face topography and their transition to non-self-affine properties31

(where self-affinity means the roughness scales with the observation
window) to define a suitable comparison scale. We also aim to develop
supporting statistical methods for forensic fracture matching using
three-dimensional (3D) topological imaging of fracture surface details.
Fracture surface topography exhibits unique characteristics across
various length scales, offering significant insights into damage initia-
tion and propagation. Thematerial microstructure controls themicro-
mechanisms of fracture and the microscopic crack growth path, while
the loading direction determines the macroscopic crack trajectory32.
Mandelbrot et al.31 first demonstrated the self-affine nature of frac-
tured surfaces, relating their roughness to the material’s resistance to
fracture through the fractal dimension. This self-affine roughness has
been experimentally verified for various materials (metals, ceramics,
and glasses) and under static and dynamic loading conditions33–37. A
key finding is the variation of the surface descriptors when measured
parallel to the crack front and along the directionof propagation38. The
cut-off length scale of the self-affine behavior has been suggested as a
unique scale to characterize the microscale fracture process in
ductile34,39,40 and brittle/semi-brittle materials34,41,42. Motivated by
observations about the self-affine nature of fracture surfaces, we
hypothesize that a randomly propagating crack will exhibit distinctive
topographical details when observed from a global coordinate that
does not recognize the direction of crack propagation. This work
explores the existence of such distinctions at relevant length scales,
which implies they can be used to individualize and distinguish paires
of fracture surfaces. Our approach leverages the distinctive attributes
of microscopic fracture surface features at relevant length scales,
arising from the interaction of the propagating crack-tip process-zone
and microstructure details, as shown in Fig. 1c. The corresponding
surface roughness analysis is shown in Fig. 1d using a height-height

correlation function, δhðδxÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h½hðx+ δxÞ � hðxÞ�2ix
q

, where the 〈⋯ 〉

operator denotes averaging over the x-direction. At the small length
scale of less than 10–20μm, the roughness characteristic is self-affine
(i.e. proportional to the analysis window scale). However, at larger
length scales (>50–70μm), the roughness characteristic deviates and
reaches a saturation level, highlighting the individuality of the surface
topography at such scale. The height-height correlation function at
this transition scale, as shown in Fig. 1d, captures the uniqueness of the
fracture surfaces. We use this transition scale to set the observation
scales (i.e., field of view (FOV) and imaging resolution) for comparing
matching and non-matching surfaces, and creating a statistical model
for classification. This imaging scale should be greater than about 10-
times the self-affine transition scale to avert signal aliasing. Multiple
observations at different spectral topographical frequency bands
(around the transition scale of fracture surface topography) can be

combined into onemodel to improve discrimination between surfaces
of the same class or from similar manufacturing processes. This sta-
tistical model can produce a likelihood ratio or log-odds ratio for
classifying new surface sets, similar to methods used in fingerprint
identification and bullet matching43–49. This model can estimate mis-
classification probabilities and compare them to actual rates in test
data. For example, in fingerprint identification, features (minutiae) on
reference and latent prints are marked and scored based on their
match, forming part of a probabilistic model that reports a likelihood
ratio50. Similarly, the Congruent Matching Cells approach in ballistics
divides scanned cartridge breech face surfaces into cells, searches for
matches, and uses this input for a statistical model to output a like-
lihood ratio51,52.

After presenting an overview of the method and the study
objectives, we provide an evaluation of the method and several
experiments to guide choices in imaging and in the parameters for the
statistical model. We also examine the general application of the fra-
mework to different modes of failure under generalized loading,
mimicking mixed mode-I and mode-III loading in fracture mechanics.
Finally, we discuss our results and illustrate how it may be applied in a
forensic context. In the method section, we describe the sample gen-
eration and the imaging process used to create training and forensi-
cally relevant data sets. We then provide a description of the statistical
model which discriminates the matching fracture surfaces from the
non-matching surfaces. Supplementary materials provide additional
information about themethods andmaterials. An R53 software package
to perform the model fitting and analysis, MixMatrix, and code to
reproduce the analysis and figures is available54.

Results
In this section, we demonstrate the developed framework for match-
ing fragments and discuss some of its attributes, generalities, and
limitations.

Imaging scale for comparison
When comparing characteristic features on a fractured surface, iden-
tifying the proper magnification and FOV are critical. An optical image
obtained by high magnification and a small field of view will possess a
visually indistinguishable characteristic. This is the range where sur-
face roughness shows a self-affine or fractal nature as noted in Fig. 1d.
In this range, the material intrinsic local fracture mechanism shows
similar topographical surface features over the fractured surface (e.g.
local cleavage steps and river patterns, and/or dimples and voids). On
the contrary, employing lower magnifications will result in a lower
power of identifying the class characteristics of the surface. However,
we showed that the transition scale of the height-height correlation
function captures the uniqueness of the fracture surfaces. We found
that this transition scale is about 2–3 times the average grain size for
the class of materials examined here and undergoes cleavage fracture.
Interestingly, this scale is consistent with the average cleavage critical
distance for the local stresses to reach the critical fracture stress34,55

required for cleavage fracture initiation and typically extends to 2–3
times the grain size, or around 50–75μm for the tested material sys-
tem.This criticalmicrostructural size scale for cleavage crack initiation
is stochastic in nature as it statistically encompasses the location of the
critical fracture-triggering microscopic inclusion or particle34,56,57.

Accordingly, the surface characteristic becomes statistically
unique and non-self-affine at a larger scale. This scale sets; (i) the
observation FOV to be around 10-periods of such scale. And (ii) the
range of wavelengths or frequencies to perform correlations on pairs
of fragments. When correlating the frequency bands in the range of
5–20mm−1 (i.e. 50–200μmwavelength) full separation and clustering
can be clearly observed in Fig. 2a for matched and non-match fracture
surface pairs. Furthermore, beyond this frequency range, the match
and non-match correlations overlap, as noted on Fig. 2b. The identified
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imaging scale (which should be established for each class of materials)
coupled with the statistical analysis framework provides a promising
quantitative forensic comparison for a wide class of materials. How-
ever, it is crucial to acquire precise 3D topographical representations
of the fracture surface without imaging artifacts for the comparison

process. Two main issues may pose additional problems for the
technique49. (1) The comparison technique is well-suited for materials
that exhibit cleavage fracture, which typically possesses a relatively
planar fracture surface within several hundred microns. The planarity
of the cleavage fracture surface ensures that the imaging depth reso-
lution remains in the sub-micron range across the entire surface
topography. However, if the fracture surface exhibits ductile tearing
with large, tortuous fracture path and millimeter-scale morphological
variations58, additional mathematical treatments will be needed, simi-
lar to the comparison of cylindrical surfaces like cartridge cases59,60. (2)
Surface anomalies, such as grain fall-out and fracture surface corro-
sion,will reduce fracture-pair correlations amongmatches,making the
matching and non-matching classes less distinct. In such cases, a larger
image set will be necessary to maintain the same power of separation.

Classification performance
There are two datasets from the knives and two from the steel bars: “K-
1-1” is the first set of images from the first set of knives (Supplementary
Fig. 1), and the imaging is independently repeated generating addi-
tional sets of images “K-1-2”and “K-1-3” for repeat analysis. “K-2” indi-
cates the other set of knives, whereas “S-1” and “S-2” indicate the two
steel bar samples (Supplementary Fig. 2). Figure 3a shows the classi-
fications obtainedby trainingoneachof the four datasets, represented
by one of the color boxes, with all 9 images per sample and classifying
on all the other sets of surfaces using the matrix-variate t distribution
and a common degrees of freedom parameter, ν = 3, 5, 10, 15, 20, and
30, and prior probability of being amatch of 0.5 (for example, training
on the first set and testing on sets 2, 3, and 4, and continuing the same
process with the other sets as the training set). The output (Supple-
mentary Table 1) given in terms of the log-odds of being a match—log-
odds larger than zero (p =0.5) indicate classification as a match. While
initially there are no false positives or false negatives, as the degrees of
freedom parameter (DF or ν) increases, there is one false positive,
though this probability is very close to 0.5 and all of the true positives
have a probability close to 1, which suggests using a classification
threshold other than 0.5 would yield perfect classification in this set of
data. A different threshold canbe chosen by selecting a lowprobability
(such as 10−4) as a probability of a false alarm and using the distribution
of log-odds of the true non-matches to fix that threshold con-
servatively by selecting an upper confidence bound of that quantile61.
Using the upper 95% confidence bound for the threshold at which the
false alarm probability based on the distribution of true negatives is

Fig. 3 | Classification performance. a Log-odds of being a match split by training
set and true class membership for matrix − t distributions with 3, 5, 10, 15, 20, and
30 degrees of freedom. A log-odds ratio greater than 0 indicates greater odds of
being a match than a non-match. The predictions for each training set are per-
formed on all four sets of fracture surfaces.b Individual truematch correlations for
three repetitions of topographical imaging of the K-1 set of 9 knives and with 9

images per knife. The similarity among the three distributions demonstrates that
similar results will be obtained upon re-imaging the same surface, which is
important in forensic applications. The large dots indicate the means of the sets,
and we display the covariance matrices through the 99% ellipses of concentration
of their distributions.

a      Correla�ons at two bands within the frequency transi�on range

b                         Correla�ons over the five lowest frequency ranges

Fig. 2 | Topography based separation. a Scatter plot of correlations for 81 mat-
ched pairs and 648 non-matched pairs from training set K-1-1 for the 5–10 and
10–20mm−1 frequency ranges on a Fisher-z (nonlinear) axis. We see that true
matches and true non-matches are distinguished in this example by features in the
5–10 and 10–20mm−1 frequency ranges. The connected points show the values of
nine overlapping images from the same surface, indicating that while some indi-
vidual images may not distinguish matches from non-matches, taking an ensemble
of images from the surface importantly improves the ability to discriminate
between the two classes in this data set. b Histograms of correlations of true
matches and true non-matches for the samedata set split by frequencyband. Lower
frequencies are well-separated, but higher frequencies begin to have more sub-
stantial overlap.
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10−4 sets the threshold at a probability of 0.8814 for the most con-
servative training set at the setting of ν = 10, for example, which still
results in perfect classification. Additionally, we may consider the
probability in the range of 0.5 > P >0.88 to bound the range of
inconclusive decisions.

Reproducibility of results
In order to determine the reproducibility of results for a given sample,
we re-imaged one of the knife samples three times and examined the
distributions of the true match image correlations in Fig. 3b. The dif-
ferent re-imaged sets are labeled “K-1-1”, “K-1-2”, and “K-1-3”. Themeans
of the distributions (indicated by the large shapes) are similar and the
covariancematrices, visualized using 99% confidence ellipses, are also
similar. Using the two-sample Peacock test, a two-dimensional exten-
sion of the Kolmogorov-Smirnov test62,63, there is no evidence these
distributions differ significantly (H0: distributions are the same for 1
and 2, p =0.21; H0 for 1 and 3, p =0.32; H0 for 2 and 3, p =0.25). We
conclude that the imaging and analysis processes are reproducible for
the analyzed samples.

Selecting DF (ν)
The training sets do not have a sufficient number of observations in
both classes to estimate ν in the MxVtmodel. However, the analysis in
the previous section indicates it has some influence on the results. We
performed a leave-one-out cross-validation (LOOCV) procedure to
provide guidance about the effects of changing the parameter. For
each surface in a training set, a model was trained on the set of
observations excluding that surface and tested on the observations
using the excluded surface. This was done for k = 9 images on training

sets S-1 and S-2 and using k = 5 images (restricting to the images with
only 50% overlap) and k = 3 images (restricting to the non-overlapping
images) on all four training sets. The procedurewasperformedonly on
sets S-1 and S-2 for k = 9 because nine surfaces are needed to fit the
model and K-1-1 and K-2 have only nine fracture pairs, while S-1 and S-2
have ten fracture pairs. Figure 4a shows the results for k = 3, 5, and 9
respectively. The parameter ν varied from 3 to 30. In all cases, the true
matches and true non-matches were perfectly classified using a
threshold probability of 0.5 (log-odds of 0). Higher values of ν had
more separation between the classes. Using 9 images with 75% overlap
had greater separation than 5 images with 50% overlap and greater
separation between the identification of truematches. However, given
that there is perfect classification in all cases, this finding does not
provide much guidance on the selection of ν.

Required number of images for discrimination and model
selection
Due to the existence of morphological disturbances in some images
(e.g., grains fall out from the fracture surface or substantially large out-
of-plane curvature within the range of comparisons), there is no per-
fect separation between all image pairs for the matches and non-
matches. This can be seen in Fig. 2a where some image pairs have a
correlation coefficient of less than0.50 for the twobands of frequency
analysis. To mitigate the influence of local topographical disturbances
when deciding whether a pair of fragments represents a match or not,
multiple observations are needed. To determine howmany images are
needed to optimize classification performance, we started by training
models using all nine images from each base-tip pair in each training
set as before. We again used the MxVt model with ν = 3, 5, 10, 15, 20,

Fig. 4 | Demonstration ofmodel discriminationpower. aCross-validation results
for models fit using k = 3, 5, and 9 images of each surface. The cross-validation was
done to provide guidance about the number of images and the choice of DF (ν).
Therewere no false positives or false negatives in this analysis, so it did not provide
any conclusive results. b Rates of false positive and false negative classifications (in
%) using models trained on the four different sets of surfaces and tested on con-
secutive subsets of those images for k = 2, 3,…, 9. A full summary of the results is
provided in Supplementary Table 1. cDistributions of the log-odds of amatchusing

models trained on the four different sets of surfaces and tested on subsets of k
consecutive images for k = 2, 3,…, 9, for amodelwith ν = 10.dRates of falsepositive
classifications (in %) using models trained on the four different sets of surfaces
using only the images with at most 50% overlap and tested on subsets of k con-
secutive images for k = 2, 3, 4, 5 and using only the 3 non-overlapping images and
tested on subsets of k consecutive images for k = 2, 3. A full summary of the results
is in Supplementary Tables 2 and 3.
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and 30, and then tested them on subsets of consecutive overlapping
images of size k, for k = 2, 3,…9with themodel reduced to considering
only the selected images and the training set for each model excluded
from testing. A summary of the complete results is given in the Sup-
plementary Section S.4.

In Fig. 4b,modelswith higher νhavehigher false negative rates for
all values of k. For values of k over 4, only 20 and 30 DF have false
negatives (specifically, they each have one false negative result, Sup-
plementary Table 1). Low values of the degrees of freedom parameter
have false positives. All of this suggests that choosing a value near
ν = 10 and k ≥ 5 images is sufficient for error-free classification in
the examined sample sets. Figure 4c displays complete results for a
model with ν = 10. As k increases, the typical classification results
become more separated. However, even with only two images con-
sidered in the test cases for the ν = 10model, the accuracy is very high.
The worst case of a false positive is classified with only a probability of
0.8314. Theworst case of a false negative is classifiedwith a probability
of 0.504. Again, this is the range of match probabilities where an
inconclusive match result could be assimilated for 0.5 > P > 0.88 as
noted in the classification performance section.

Percentage of imaging overlap
Guided by the results of Fig. 4c, it is apparent that we need at least 5 to
6 images for error-free discrimination in this particular example, and
that performance improves with additional images. We reassessed the
imaging procedure to gauge the role of the image-overlap ratio. The
initial experiment involved imaging surfaces using nine images with
75% overlap between images, which provides three observations for
each point on the surface, apart from the edges. However, a similar
area can be imaged using 5 images with 50% overlap, which produces
two observations of each point on the surface apart from the edges, or
using 3 non-overlapping images, which raises the question of whether
anything is gainedby having anadditional third imageof the samearea
and, if so, what level of overlap is best.

We can evaluate this by providing an analysis similar to that done
previously: looking at the classification results when restricted to cases
with the specified overlap. We train classifiers on the same sets as
before, except using 5 images with 50% overlap instead of 9 images
with 75% overlap and then test the models on the other sets excluding
the set used to train themodel by classifying pairs of surfaces using all
possible subsets of those images on the surface of sizes 2, 3, 4, and 5.
When restricted to the case of 50% overlap, Fig. 4d only shows perfect
classification when all four or five images are included and ν < 20. In all
cases, there are no false negatives.

We perform a similar exercise in the case of the non-overlapping
images. There are three non-overlapping images per surfacewhich can
be used to train the classifiers and the models can then be tested on
subsets of those images on each surface of sizes 2 and 3. In the case of
non-overlapping images, nomodel results in perfect classification. The
false positives for each model are also shown in Fig. 4d. There are no
false negatives in the classification decisions.

This suggests that, while having more images is generally better,
using 5 images with 50% overlap appears to be sufficient if all the
images are used. Imaging the entire surface with 50% overlap outper-
forms imaging the entire surface with 75% overlap in the sense that it
works for all of the classes ofmodel. However, if trainingwith 9 images
with 75% overlap is possible, testing on new surfaces is feasible with as
few as 5 test images with an appropriate choice of the degrees of
freedom parameter in the model.

Calibration of output probabilities
The models present the outputs as probabilities, therefore we need to
assess how well the probabilities in the models reflect the underlying
probabilities in the matching and non-matching populations. Figure 5
displays a calibration plot comparing the output probabilities for all

predictions to the empirical proportions in each class with a line drawn
by a local regression smoother (LOESS) for each model64,65. These
predictions can be compared to the reference line on the plot, y = x, to
judge the calibration. The true matches correspond with y = 1 and the
true non-matches with y =0. The vast majority of the model classifi-
cations are correctwith probabilities of being amatch of either <0.001
for non-matches or >0.999 formatches. The relative lack of samples in
the middle range makes it hard to judge the calibration. The lowest
probability of amatch among the truematcheswas0.3709. Among the
variousmodels, the 99th percentileof the predictions for non-matches
was, in the worst case, 0.1437. Only outliers overlapped in middle
range. We note that our evaluation of the calibration is limited by the
sample size in the experiment—with more samples and more obser-
vations with match probabilities between 0.1 and 0.9, a better eva-
luation of the calibration could be made.

Examining the framework capabilities on a twisted-fracture
knife set
All examined sets of fractured articles were tested in tension or
bending. This ismode-I cleavage fracturewhere the crack propagation
direction is normal to the loading axis. The fracture surface showed
topographical features normal to the fracture surface, similar to those
shown in the scanning electron microscope (SEM) image of Fig. 1b.
However for a general forensic article such as a knife or a pry tool, an
edge could be broken due to bending and twisting of the article. This
would impose amixedmode of loading includingmode-I opening and
mode-III twisting of a crack. To understand the effect of external
loadingmode on the generality of the proposed analysis framework, a
set of nine knives fromthe samemanufacturer similar to thepreviously
used sets were fractured at random using the same fixture (Supple-
mentary Fig. 1b) and forming set of twisted knives shown in Supple-
mentary Fig. 1e. A typical twisted knife fracture topography is very
different at both the macro and micro scales. At the macro-scale, the
crack trajectory is no longer planer with curvilinear or twisted trajec-
tory (Supplementary Fig. 1e). At the micro-scale, the SEM image of
Fig. 6b shows twisted fracture morphology in the plane of the crack
that is very different than those under mode-I loading of Fig. 6a. This
unique texturewouldprobably further enhance the individuality of the
fracture surface.Wewill attempt to examine the validity of the analysis
protocol on such general case of fractured articles. The twisted knife
set was imaged using the same procedure discussed in “Sample Gen-
eration and Imaging” section and the same magnification of 20X.
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However, due to the excessive tortuosity of the crack path, five images
(k = 5) with 75% overlap between adjacent images were employed.
Using themodels previously trained on the four training sets loaded in
tension or bending, and restricted to 5 images and setting the degrees
of freedom ν = 10. The results for this set, shown in Fig. 6c, are similar
to those obtained in Fig. 3a despite the use of a different external
loading of mode-I tensile cleavage fracture. The truematch cases were
identified with a probability exceeding 99.999% and the true non-
match was identified with a probability not exceeding 0.05% for all
different training sets. This suggests the scale of comparison, derived
from the self-affine saturation scale of the fracture surface topography
ismore general and tied to themicrostructure scale (grain size) for the
class of materials failing by cleavage fracture (similar to hardened tool
materials). This result is far more reaching with practical implications.
As long as the cleavage fracture is the dominant mode of failure, a
single robust training data set under simplified loading conditions for
the samematerial class would be sufficient to help in discriminating; (i)
articles that were exposed to complex external loading (i.e. mixed
mode of fracture). (ii) articles from different classes of materials, but
share the same grain size distributions, and (iii) articles with different
grain sizes, which would only require changes of the FOV to cover 20-
grains while changing the comparison frequency bands to cover the
corresponding 2–4 and 4–8 grain size ranges. It is conceivable to
extend these results to glassy metals, polymers and ceramics, that
undergo cleavage and/or brittle or semi-brittle fracture. In such cases,
the limits of the fractal scale should be examined and compared to the
critical microstructure scale of the fracture surface topography, such
as river and herringbone patterns. Though, additional experimental
verification is needed for these classes of non-crystalline materials.

Discussion
This paper provides a formal quantitative basis for matching metal
fragments found at crime scenes. Our proposed approach combines
fracture mechanics with statistics and machine learning to quantify,
given a prior probability, the posterior probability that two candidate
specimens are a match. Our methodology utilizes 3D spectral analysis
of the fracture surface topography,mappedbywhite light non-contact
surface profilometers. Specifically, our framework realizes the dis-
tinctive attributes for a pair of fragment surfaces when viewed at a
length scaledefinedby the transitionof fracture surface topography to
become non-self-affine, and uses them to do a quantitative physical

match analysis of metal fragments. Fracture surface morphology has
been analyzed for many classes of materials and external loading
conditions including tensile, bending and twisting of articles, and
shown to be self-affine within a microscopic scale relevant to the
fracture surface topography.

The transition scale of the height-height correlation function,
shown in Fig. 1d is used to set the FOV and imaging resolution. For the
examined class ofmaterials, the saturation level is observed at a length
scale ( >50–70μm). Moreover, the examined class of materials has an
average grain size of approximately dg = 25–35μm.This will determine
the transition scale, where the individuality and uniqueness of the
fracture surfaces become apparent, to be approximately two-grain
diameters. This relationship, characterized by a constant fractal
dimension and related to the material average grain size, has been
observed in some cleavage fracture mechanics studies. Dauskardt et
al.34 have examined the topography of a wide range of brittle failure of
well-characterized mild steel at extremely low temperature and
observed two ranges over which the fractal dimension is constant. The
first range is 1–10μmcorresponding to the cleavage step. This range of
cleavage steps will be non-unique as it will be found in all surfaces of
the same alloy that exhibit cleavage failure. The second range is of the
order of twice to three times the grain size. It is shown that the fractal
dimension is constant over a range of the order of twice to three times
the grain size range for transgranular cleavage fracture, about twice
the grain size range for intergranular fracture, and of the order of the
grain size for the quasicleavage fracture34. Some fracture mechanics
studies have demonstrated that cleavage failure occurs when the local
stress ahead of the crack tip exceeds the fracture strength of the
material over a characteristic distance, equal to about two grain
diameter34,55. This critical scale is required for cleavage crack initiation.
However, it is apparent that such critical scale is also embedded in the
topography of the fracture surface. When a microcrack is initiated at a
hard-particle, it may be arrested if there is insufficient global driving
forces to continue crack propagation57. Accordingly, the requirement
of reaching critical stress over amicrostructure critical distance will be
maintained for continued crack propagation until the macroscopic
crack reach an unstable propagation domain, and thereby set-forth the
critical fractal scale on the topography of the fracture surface. It is also
important to note that the reported fractographic details are reported
for mild steel, examined at extremely low temperature, below the
ductile to brittle transition temperature (DTBTT) of (−95 oC), where

Fig. 6 | Framework capabilities. a SEM image of a typical fracture surface bent of a
knife broken in bending, showing topological details normal to the imaging plane.
b SEM image of a typical fracture surface of a broken knife in torsion, showing in-

plane swirl textures. c Classification performance on a set of nine knives broken by
twisting. Themodelswere trainedondifferent training bending and tensile fracture
sets using five images and ν = 10.
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fracture occurs before general yielding due to slip-induced cleavage.
For the current examined alloy of AISI 440C stainless steel, a common
alloy for cutlery and knives, the alloy has up to 1.2% carbon content in
order to make the alloy hard and remain sharp. Such carbon content
also shifts the DBTT to be above the room temperature66. Accordingly,
it is no surprise that the examined alloy in the formof rods or knives at
room temperature shows similar fractal character to mild steel alloys
tested below their DTBTT34,55. The requirement of local stress ahead of
a crack to exceed the fracture stress over a microstructurally sig-
nificant distance55 should be viewed in statistical terms. The char-
acteristic dimension represents the location of the weakest link for the
fracture process to occur57. The cleavage fracture process zone is
statistical in nature56, as a finite volume of the material ahead of the
crack tip should include a local defect to nucleate the cleavage crack.
Such statistical argument is used to explain the large scatter in the
cleavage fracture toughness data, wherein two nominally identical
articles from the same material lot might show very different tough-
ness (resistance to fracture) and failure strength values. By extension,
we speculate also that such statistical differenceswill result in different
local fracture surface topography because of the statistical random-
ness of the microscopic spatial location of the critical fracture-
triggering particle. Susceptibility of cleavage fracture is sensitive to
microstructure (grain size and carbide population), yield strength,
stress state (triaxiality), and environment (temperature and radiation).
Similarly, the fracture topography will exhibit unique microscopic
feature signatures that exist on the entire fracture surface. We extend
these parameters to generally include thematerial microstructure, the
intrinsic material resistance to fracture, the direction of the applied
load, and the statistical distribution of imperfections within the
microstructure. The proposed framework’s ability to classify large sets
of fracture surface pairs under various macroscopic loading condi-
tions (both controlled and random) reinforces the foundational
aspects of fracture mechanics in forensic comparisons. By leveraging
the fractal nature of fracture surface topography and the statistical
nature of cleavage fracture initiation, this approach establishes the
critical length scale required for imaging comparisons and identifies
the unique attributes of the fracture surface for forensic applications.

We exploit these distinctive features to quantitatively distinguish
themicroscopic features on fracture surfaces. Statistical learning tools
are used to classify specimens. Using at least 5–6 images in the case of
75% image overlap or five images with 50% image overlap, we found
that the matrix-variate t-distribution with 10–15 degrees of freedom,
and a first-order autoregressive correlation structure to describe
between-image correlation provides highly effective discrimination
between matching and non-matching surface pairs. Our results show
the distinctive individuality and the lack of identified discrepancies for
a pair of fractured surfaces at wavelengths in the range of 2–8 grain
diameters (50–200μm, or the frequency range of 5–20mm−1 for
the examined tool-steel). Near-perfect discrimination was achieved in
the four training sets totaling 38 samples along with a set of 9 twisted
samples, even in cases where some images on a surface had correla-
tions that were not distinguishable from non-matching images. Chal-
lenges to this technique arise from high topographical details with a
large aspect ratio that might shadow the surrounding details and
might disturb one of the frequency bands. Statistical methods using
two frequency bands and an extended number of base-tip image pairs
yielded highly accurate match decisions. Among the range of training
sample sets, this domain of distinctive individuality was found to be
persistent and easily identified.

Our results suggest that for the class ofmaterials that undergoes
cleavage fracture, a single robust training data set would be needed
for the identification of different classes of materials that share the
same grain size distribution, but exposed to different and complex
loading conditions. Furthermore, a framework is provided for per-
forming matching of fragments with recommendations for model

parameters, procedures for training models on a similar class of
materials and setting the imaging scale and comparison bands as a
function of the grain sizes, and procedures for testing new samples.
Repeated imaging on the same surfaces consistently provided similar
results. Our framework provided near-perfect matching with high
confidence and so has the potential to be of significant impact,
providing the ability to introduce more formality into how forensic
match comparisons are conducted, through a rigorousmathematical
framework. Our framework is also general enough to be applied,
after suitable modifications and identification of the proper imaging
scale, to a broad range of fractured materials and/or toolmarks, with
diverse textures and mechanical properties. In doing so, we expect
our proposed methodology and findings to help forensic scientists
and practitioners place forensic decision-making on a firmer scien-
tific footing. This can help formalize the scientific basis for con-
clusive matching of fragments leading to quantitative and more
objective forensic decisions.

Methods
Sample generation and imaging
To mimic forensic articles found in a crime scene that might undergo
comparative analysis, we consider two main material classes67: sets of
rectangular rods of a common tool steel material (SS-440C) fractured
under control tension and bending configurations (Supplementary
Fig. 2b, d), and sets of knives (Supplementary Fig. 1c, d) from the same
manufacturer, fractured at random employing the fixture shown in
Supplementary Fig. 1b. Figure 1a shows a typical pair of fragments,
generated for this study. The average grain size for both groups was
approximately dg = 25–35μm. Four different sets of samples were
established with nine specimens in the two sets of knives and ten
specimens in the two sets of steel rods. To show the generalization of
the approach for modes of loading, an additional set of 9-knives
(Supplementary Fig. 1e) was tested by random twisting utilizing the
same fixture (Supplementary Fig. 1b). The fracture surface topography
would be influenced by a combination of fracture loading modes; that
is mixed mode of the tensile mode-I and tearing mode-III loading as
shown in the SEM images of Fig. 6b. The SEM images show subtle
differences between the Modes of loading. Figure 6a shows cleaved
grains in a direction normal to the imaging plane due to the pulling
action (mode-I) under bending. Figure 6(b) shows swirl texture due to
the combinedout of plane tensile (mode-I) and inplane tearing (mode-
III) loading. These topographical textures are very different and clearly
show the critical role of external loading direction. Further details
about sample preparations are given in Supplementary Section 1.

For clarity, we refer to the surface attached to the knife handle as
the base and the surface from the tip portion of the knife as the tip and
apply the same terminology to samples from the rectangular steel
rods. The microscopic features of pairs of fracture surfaces were
analyzed by a standard non-contact 3D optical interferometer (Zygo-
NewView6300), which provides a height resolution of 20 nm. Utilizing
the results of the height-height correlations of Fig. 1d, the transition
scale commences at around 50–70μm to become non-self-affine and
saturate, rendering a required imaging FOV of about 500μm. For the
examined material systems, this scale amounts to 2–3 times the grain
size (consistent with the fracture process zone for cleavage fracture55),
and the FOV should cover 20–30 grain diameters. Accordingly, an
opticalmagnification of 20X is employed, providing a 550μmFOV and
0.55μm/pixel resolution (Fig. 1c). Two fragments were aligned for
imaging relative to their rectangular edges and their lower right cor-
ner. Image mis-registration can greatly affect the correlation estima-
tions between a pair of images. However, the implemented procedure
in this work to utilize the spectral (frequency) space is very tolerant to
linear mis-registration of up to 20% of the FOV and several degrees of
angular miss-registration, further elaborated in Supplementary
Section 2.
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A series of k-overlapping surface height 3D topographic maps
were acquired from the pairs of fracture surfaces (Fig. 1e; k = 9), and
quantified using Fourier transform based power spectral analysis as
summarized in Fig. 7a in the image analysis step. The choice of overlap
means there are three full independent sequential images on a surface.
Multiple overlapping images were needed to overcome problems
arising from missing grains between pairs of the fracture surface and/
or the special circumstances of complex tortuous path of fracture. The
effect of the number of images and overlapping ratio are further dis-
cussed in the result section. Additionally, having a super-image of
stitched FOVs results inmisregistration at theoverlappingboundary of
the stitched images, leading to an additional interfering frequency
within the frequency bands of comparison49.

Image spectral analysis and frequency correlations
From the 3D imaging of the fracture surface, the measured height
distribution function h(x) is acquired to define the topography of the
fracture surface at every spatial point, x on the fracture surface of a
pair of fragments, shown in Fig. 7a. Each wavelength on the fracture
surface has a distribution, in the frequency domain H(f), which is
acquired using a Fast Fourier Transform (FFT) operator. For example,
grain size has a distribution of frequencies across the spectrum rather
than one specific frequency. Similarly, other microscopic fracture
features have a range of spectral distributions67–69. For a pair of frac-
tured surfaces, the population of these features contains relevant
information about the physical fracture processes present at each
length scale (e.g. cleavage steps, dimples and voids at the sub-micro-
scale, and river marks at scales of tens of microns). The spectral space
analysis provides a straightforward segmentation of the surface
topographical frequency ranges for comparison. After calculating the
spectra of each pair of images, each spectrum was divided into mul-
tiple radial sectors. The segmented angular sectors for the frequency
range (0∘, 180∘) represent the entire data set because the amplitude of
H(f) exhibits inversion symmetry. The spectral array size is propor-
tional to 2n, as this is a mathematical feature of the FFT. For the image
size employed in thiswork, a spectral array of 1024by 1024 is acquired,
although only the upper half is utilized because of symmetry. The
radial segments for comparison in the frequency domain (marked on
the FFT spectral representation in Fig. 7a) are chosen to reflect the

physical process scales and the corresponding wavelength, identified
from the height-height correlation of Fig. 1d.

For comparison, we use the frequency amplitude, �Hðf Þ for each
surface spectral frequency. To compare the surfaces of two fragments,
two-dimensional statistical correlations between their spectra are
computed in banded radial frequencies, producing a similarity mea-
sure for each frequency band across the corresponding k pairs of
images. As noted earlier, the increments for the bands’ frequency are
determined by the scale of the image and thematerial microstructure,
covering the transition scale of the height-height correlation of Fig. 1d.
A training data set with N fracture surfaces is utilized to estimate the
correlation distribution among the two selected frequency bands on
all k image pairs for both the population of truematches and true non-
matches fracture surfaces. For establishing a statistical match, these
distributions, shown in Fig. 2 (a), form the basis for our classification
and matching process strategy, following the two modules summar-
ized in Fig. 4, (b) Model training on an initial data set, and (c) per-
forming classification of new sample(s).

Model training/fitting
A statistical model will be developed to distinguish matching from
non-matching fracture surfaces70. Employing a training data set, the
behavior of the frequency band correlations in the population of
matches and non-matches has to be estimated and modeled. The
proposed framework provides a separate model for each class (i.e.,
match and non-match). The model training process, highlighted in
Fig. 4b, entails:
1. Choice of controlled and robustly characterized data set of frac-

tured pairs to train the model.
2. Computation of the correlations for the frequency bands for the

sets of k images for all N matching and N(N − 1)/2 non-matching
surface pairs.

3. Employing the Fisher’s z transformation on the correlation data to
stabilize variance71.

4. Fitting the models using a matrix-variate distribution (as detailed
later in this section) to describe the distribution of true matches
and true non-matches. The matrix-variate models account for the
difference in the location of the correlations and account for the
covariance of the repeated observations across the surface.
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Fig. 7 | Flow chart summarizing our classification framework. Steps include (a)
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trained in (b) on samples of the same class to guide forensic conclusions.
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The frequency band correlations for one of the examined data
sets (K-1-1) are shown in Fig. 2. The proposed method’s discrimination
ability can be judged from the clear separation of matching and non-
matching surfaces within two separate clusters. The data in this illus-
tration were derived from N = 9 base-tip pairs from fractured knives. A
series of k = 9 overlapping images were taken from each base and tip
fracture surface, resulting in N × 2k = 162 total images (81 from the tips
and 81 from the bases). Additional details are given in the Supple-
mentary Section 2 for different data sets. In this example, image pairs
for when the tip and base surfaces were from the same knife are true
matches (N × k = 81 matched-pairs), while those pairs for which the tip
and base surfaces were from different knives are true non-matches
(N(N − 1) × k = 648 unmatched-pairs). Furthermore, there is one image-
pair among the true matches in Fig. 2a which cannot be distinguished
from the true non-matches and three other pairs that are ambiguous.
To further improve the discrimination, consideringmultiple k − obser-
vations from the same surface would distinguish it from the non-
matches, since the other observations on that surface are well-
separated from the non-matches. In the current framework, we take
the information from every pair of images and collectively based on
the model, a decision is driven accounting for the fact that the images
are not independent, i.e. overlapping and coming from the same
fracture surface. The role of imaging repetition or overlap, may
improve the signal to noise ratio. Figure 2b summarizes the correlation
analysis over several ranges of frequency bands. A clear separation
(lower values for the true non-matches and higher values for the true
matches) can be observed for the 5–10 and 10–20mm−1 frequency-
band ranges. Beyond these frequency ranges, there is some overlap,
where the truematch and the true non-match correlation distributions
become less distinct and overlap more.

For the presented data set of k = 9 overlapping images for each
fracture surface and two (or more) comparison frequencies, each
comparison between a pair of fracture surfaces based on the ensemble
of nine images provides a 2 × 9 matrix of correlations. Our model
needs to account for the lack of independence in the images from the
same specimens. Accordingly, we propose using a matrix-variate
distribution72,73 to model the densities of the matching and non-
matching populations, and, specifically, a matrix-variate t distribution
(MxVt) because the data for the individual comparisons are approxi-
mately elliptically distributed but have heavier tails than a normal
distribution. A definition of the distribution is in the Supplementary
Section 3 and the density is defined in Supplementary Equation 1.

We use matrix-variate distributions to model the relationship
between the two frequency bands in each image comparison and
across all the images being compared for each of the base and tip pairs
(e.g. Fig. 2a). Because of the overlapping-image structure of the data
source, our model allows between-image correlations in the matrix-
variate model to be related according to an autoregressive model of
order 1 (or AR(1)) model (implying that immediately adjacent images
canbe correlated). The AR(1)model implies that themean correlations
in the two frequency bands remain the same across the images on a
surface in themodel. The parameters of themodel are estimated using
an expectation-maximization (EM) algorithm developed for the
matrix-variate t distribution74.

Classification of a new object
Figure 7c sumarizes the classification procedure. Suppose the fitted
model has been trained on a set of k-images per fracture surface,
yielding probability density functions f1 corresponding to the popu-
lation of true matches and f2 corresponding to the population of true
non-matches. Suppose also that there is a new pair of fracture surfaces
that may or may not match. First, the correlations for the k-aligned
image pairs in the chosen frequency bands are computed and trans-
formed, yielding a newobservationX, which is amatrix of observations
of correlations with one row for each frequency band and one column

for each pair of images—here, a 2 × k matrix. Then, presuming prior
probabilitypof being a truematchandprior probability 1 − pof being a
true non-match, we can find, by combining prior probabilities and the
match and non-match densities from the model, the posterior prob-
ability that the two surfaces match as follows:

PðX is amatchÞ= pf 1ðX Þ
pf 1ðX Þ+ ð1� pÞf 2ðX Þ

: ð1Þ

Alternatively, a likelihood ratio (LR) can be calculated as f1(X)/f2(X), a
common method in forensic applications43–49. These LR results can
then be used to express the uncertainty about the strength of evidence
under different sets of assumptions75. The likelihood ratio can be
combined with prior odds (p / (1 − p)) to produce posterior odds:

PosteriorOdds =
p

1� p
× LR ð2Þ

with the conversion of odds O to probability P performed by the for-
mula P =O / (1 +O). In this paper, odds and likelihood ratios are
employed and reported on the logarithmic scale. Once the posterior
odds are obtained, classification decisions can be made according to
the rules of evidence in setting prior probability relevant to each for-
ensic case. For the purposes of illustrating themethod, we are using an
equal prior probability of being amatch or non-match (i.e., p =0.5 or a
log prior ratio of 0). In an actual criminal or civil case, choosing a prior
match probability would require carefully considering any other
evidence or relevant information previously presented, but such
considerations are beyond the scope of this paper.

Data availability
The experimental data generated in this study for fracture match
samples have been deposited in a public access database54 at https://
github.com/gzt/fracturematching. The processed data set54 will help
to reproduce the figures and analysis in the paper.

Code availability
An R53 software package to perform the model fitting and analysis
MixMatrix, is available54. A GitHub repository containing the code
required to reproduce the figures and analysis in the paper is available
at https://github.com/gzt/fracturematching.
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