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Abstract 
The purpose of this research is to provide quantitative data analysis tools for characterization of 
tool marked surfaces to improve the scientific basis of toolmark identifications.  The 
methodology used will be an integrated approach that combines surface characterization using an 
optical profilometer to enable development of advanced visualization techniques to analyze and 
simulate striated surfaces.  Specifically, thisresearch was to develop a methodology whereby a 
three-dimensional (3-D) computer simulation of a tool tip is generated. This “virtual tool” can 
then be used to produce “virtual toolmarks” - a series of predicted markings where the applied 
force, twist of the tool, and angle of attack of the tool tip can be varied. Quantitative 3-D data 
from the suspected tool and evidence toolmarkwas acquired and a virtual reality program 
developed that takes this data and reconstructs a “virtual tool”for computer manipulation to 
create “virtual toolmarks”.  Since the “virtual tool” can be manipulated to produce a range of 
markings, the exact parameters required to obtain the best possible match to the actual tool mark 
can be found.  Duplicate marks based on these results can then be statistically compared and 
ranked on the basis of quantitative measurements.  
 
The developed software includes four major parts: (1) automated noise reduction for 3D data of 
both tools and real marks directly coming from an optical profilometer; (2) arbitrary virtual 
toolmark generation for any given tool; (3) easy to use software graphical user interface (GUI) 
for data visualization, manipulation, interaction; and (4) integrated computer-based objective 
comparison algorithms to provide statistical measure of a pair of toolmarks.  
 
Initial experiments were based on statistically analyzing 6 different tools sampled from the 50 
sequentially manufactured screwdriver tips, and 34 actual toolmarks made by a qualified 
toolmark examiner using a special jig.  These scans were carefully cleaned to remove noise from 
the data acquisition process and assigned a coordinate system that mathematically defines angles 
and twists in a natural way.  Using the virtual tookmark generation method, virtual marks were 
made at increments of 5 degrees and compared to a scan of the real tool mark.  The previously 
developed statistical algorithm performs the comparison, comparing the similarity of the 
geometry of both marks to the similarity that would occur due to random chance.  Finally, the 
method informs the forensics examiner of the angle(s) of the best matching virtual mark, 
allowing the examiner to focus his/her mark analysis on a smaller range of angles and twists. 
 
Experimental results were very promising.  In a preliminary study with both sides of 6 tips (and 6 
x 2 x 13 = 156 virtual marks) and 34 real marks, the method can distinguish matches from non-
matches with only a few false negatives reported (i.e. matches mistaken for non-matches).  For 
matches, it can also generally distinguish between marks made at high and low angles with good 
prediction.The experimental data indicated that angle for the real mark predicted by the virtual 
mark could often be achieved to within five degrees of the actual angle.  
 
In summary, the question posed as the goal of this study, “can a manipulative “virtual” tool be 
made to generate “virtual marks” for quantitative and objective toolmark characterization?” has 
been answered in the affirmative given the right conditions. Factors affecting the correct 
identification include the quality of the marking, suitable noise cleaning techniques, suitable 
virtual mark making approach, and the suitable statistical routine. Moreover, this method 
presents a unique opportunity to improve tool mark analysis by saving examiners’ time and 
reducing the possible damage to evidence. 
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Executive Summary 
 
This project has sought to answer the following question:  Can a manipulative “virtual” tool be 
made to generate “virtual marks” for quantitative and objective toolmark characterization? In 
other words, can it be said that toolmarks obtained from a “virtual tool” yields characteristics that 
are unique enough to that tool (and only that tool) to enable matching of the virtual toolmark to 
actual toolmarks to allow an objective identification algorithm to be employed for identification 
purposes? Providing answers to these questions based upon quantitative techniques rather than 
subjective analysis removes uncertainties raised by the 1993 Daubert decision, which created a 
higher standard for federal courts to accept expert witness testimony. The new standard calls for 
scientific knowledge with a basis in the scientific method to be the foundation for testimony of 
expert witnesses (in this field, toolmark examiners).  Thus, development of a method of analysis 
that reduces the subjective nature of comparative evaluation and provides statistical confirmation 
of a match, with known error rates and confidence intervals, is desirable.  The scientific method 
involving observation, hypothesis formation, hypothesis testing through experimentation, and 
result analysis was followed in this study. The research sought to directly link a tool to its 
resultant tool mark in a quantifiable way, providing information concerning the manner in which 
the mark was made.  Additionally, the methodology employed allows a statistical analysis to be 
made of the nature of the match between the mark and the tool that provides probabilities and 
error rates for the best match as opposed to when other tools are substituted.  Thus, the current 
research reinforces statistical efforts involving measurement of consecutive matching striations 
in placing toolmark identification on a sound scientific footing. 
 
This study involves the development of a “virtual tool” to generate “virtual marks” for toolmark 
characterization.  In this study, the following two hypotheses were tested: 
 
Hypothesis 1: A 3D simulation tool can be generated and manipulated to create “virtual 

marks” that match with “real marks” made by the same tool under the same 
conditions (e.g. angle, twist, and force).  

 
Hypothesis 2: The virtual tool mark generation technique can be used to effectively and 

objectively characterize the tool marks. 
 
The experimental design consisted of (1) making marks with a series of ostensibly identical 
screwdriver tips acquired previously; (2) obtaining 3D topography information from both 
screwdriver tips and toolmarks using a non-contact optical profilometer; (3) preprocessing the 
raw scanned 3D data including automated noise reduction and edge trimming; (4) developing 
manipulative tools for virtual toolmark generation; and (4) comparison of virtual marks with real 
marks using a statistical algorithm.  
 
The Ames Lab/Iowa State University team has fifty sequentially produced screwdriver tips that 
were obtained from Omega Company and used by Mr. Jim Kreiser, former firearm and toolmark 
examiner for the State of Illinois to create toolmarks. In this study, sides A and B of 6 
screwdriver tips were used to mark lead samples at angles of 45º, 60º, and 85º using a jig to 
maintain the selected angle for the toolmark as closely as possible.  The Alicona Infinite Focus 
Microscope (IFM), a non-contact optical profilometer based on focus variations, was used to 
measure surface roughness on all toolmarks at 10X spatial resolution. The spatial resolution is 
1.6 µm per pixel. The edges of the actual screwdriver tips were scanned at 45º by the same 
optical profilometer to generate 3D representations of the tips.  
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A computer software algorithm takes the raw scanned files and cleans the noises coming from 
the scan for further analysis. A software algorithm takes the cleaned real marks, and generates 
real trace marks perpendicular to the striations. The trace data consisted of surface height (z) as a 
function of distance (x) along a linear trace. Another simulation algorithm takes cleaned 
screwdriver tips, manipulates them, and then produces virtual trace marks for specified 
parameters (etc. twists, angle, and force), and at exactly the same spatial resolution as the real 
marks. This is because the analysis algorithm we employed had the assumption that the values of 
z are reported at equal increments of distance along the trace and that the traces are taken as 
nearly perpendicular to the striations as possible.  The algorithm then allows comparison of two 
such linear traces. All these algorithms are integrated into a graphical user interface (GUI) for 
interactive manipulation and visualization.  
 
A statistical algorithm, developed previously by Max Morris of the Ames Lab/Iowa State team 
and funded by National Institute of Justice, was employed to validate the virtual tool mark 
characterization technique. Validation depends on the ability to provide some measure of how 
well the generated virtual mark duplicates an actual mark produced under a controlled set of 
conditions.  The data examined in this analysis are two types of trace data: the virtual mark (VM) 
and the real mark (RM). The VM trace data are the type of data that are created virtually by the 
virtual tool at a specified condition.   
 
Briefly, the algorithm determines matching along one-dimensional profilometer data traces (z vs. 
x) where the values of z are reported at equal increments of distance along the trace and the 
traces are taken as nearly perpendicular to the striations as possible.  Such was the case for the 
data files available from the Virtual Tool (VT) and VM data files of this study.   
 
The algorithm first goes through an Optimization step to identify a region of best agreement in 
each of the two data sets.  The correlation coefficient (R-value) of this region is determined. The 
algorithm then conducts a second step in the comparison process called Validation, where 
corresponding windows of equal size are selected at randomly chosen, but common distances 
from the previously identified regions of best fit. The assumption behind the Validation step is 
that if a match truly does exist, correlations between these shifted window pairs will also be 
reasonably large because they will correspond to common sections of the tool surface.  In other 
words, if a match exists at one point along the scan length (high R-value), there should be fairly 
large correlations between corresponding pairs of windows along their entire length.  However, 
if a high R-value is found between the comparison windows of two nonmatch samples simply by 
accident, there is no reason to believe that the accidental match will hold up at other points along 
the scan length.  In this case rigid-shift pairs of windows will likely not result in especially large 
correlation values.    
 
The correlation values computed from these segment-pairs can be judged to be “large” or 
“small” only if a baseline can be established for each of the sample comparisons.  This is 
achieved by identifying a second set of paired windows (i.e. data segments), again randomly 
selected along the length of each trace, but in this case, without the constraint that they represent 
equal rigid-shifts from their respective regions of best fit.  
 
The Validation step concludes with a comparison of the two sets of correlation values just 
described, one set from windows of common random rigid-shifts from their respective regions of 
best agreement, and one set from the independently selected windows.  If the assumption of 
similarity between corresponding points for a match is true, the correlation values of the first set 
of windows should tend to be larger than those in the second.  In other words, the rigid-shift 
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window pairs should result in higher correlation values than the independently selected, totally 
random pairs.  In the case of a nonmatch, since the identification of a region of best agreement is 
simply a random event and there truly is no similarity between corresponding points along the 
trace, the correlations in the two comparison sets should be very similar.  
 
A nonparametric Mann-Whitney U-statistic is generated for the comparison.  Where the 
correlation values of the two comparison sets are similar, T1 takes values near zero, supporting a 
null hypothesis of “no match”.  If the correlations from the first rigid-shift sample are 
systematically larger than the independently selected shifts, the resulting values of T1 are larger, 
supporting an alternative hypothesis of “match”. 
 
Analysis of the data, then involves simply looking at the resulting T1 values to see if any 
particular hypotheses tested is supported by the data. Values at or near 0 will support the null 
hypothesis, i.e., there is no relationship between the comparison pairs. A non-zero value says 
there is a relationship, the greater the separation from 0 the higher probability of a “match” 
actually existing. 
 
Initial studies based on scanned data directly coming from the optical IFM system were found 
unsuccessful even with significant effort of post processing the raw data. The major reason found 
was noise due to the difficulty of optically scanning screwdriver tips because of their surface 
specularity, and the sharp angle involved between the two faces of interest (around 90 degrees 
between two faces).  It is precisely these same characteristics that cause problems when using a 
laser confocal measurement method.  Therefore, investigations were made to improve the 
scanning quality.  Further studies showed that adding more lighting sources to properly 
illuminate the screwdriver tips is vital to the success of the research project. Yet, the raw tip 
scans still contained noise, though at a lower level more easily tolerated by the statistical 
software algorithm, especially after an automated routine was developed that cleaned the data 
before further analysis. In addition, due to the limitation of the optical IFM profilometer and the 
high angle around screwdriver tip edges, this research found that scanning the screwdriver tips at 
an angle of 45 degrees (i.e., both surfaces make a 45 degree angle with respect to the optic axis 
of the instrument) will result in the best quality data, which was then used for all tip scans. 
Optically scanning the actual real toolmark was found straightforward since the surface is close 
to being flat.   
 
The basic principle behind this tool mark simulation is to take the projection of the tip geometry 
in the direction of tool travel and identify the highest points on that projection. The highest 
points will scrape the deepest into the plate material, so they are responsible for leaving the 
observed striae.  
 
Clearly, this approach is quite simple and ignores several complexities of mark making including 
material properties of the tool and plate, forces, plastic vs elastic deformation, and the possibility 
of partial markings. These phenomena can be very difficult to control and account for in a 
simulation. Since this is a first approximation, the assumption of complete geometry transfer 
from the tip to the plate was made. Hence, the effects of the specific forces and deformations are 
treated as insignificant since the geometry seems likely to be the strongest signal in the mark. 
 
Although this method is quite simple in principle, the scale of the geometry simulation required 
makes it complex to carry out on the computer. Each tip data set at the 10x magnification level 
used in this research contains more than 9000×1000 = 9 million points. Projecting and 
determining the edge of such a large amount of data on the CPU would take a long time. 
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Therefore, the Open Graphics Library (OpenGL) and its OpenGL Shading Language (GLSL) are 
used to build the simulation in order to take advantage of the parallel capabilities of the 
computer’s Graphics Processing Unit (GPU). Dividing the geometric computations among 
theshaders, a computer program that runs on the GPU to do postprocessing, drastically reduces 
the computation time required and makes virtual mark generation feasible on a standard 
computer in a reasonable period of time. 
 
To efficiently create virtual marks, a special “virtual camera”was created that looks straight 
down upon the flattened edge of the screwdriver tip data. This camera records the distance to the 
points that it sees rather than their color; it is a depth camera formed from an advanced computer 
graphics tool: an OpenGL object known as a depth buffer. This depth camera is easy to configure 
and control because they are virtually created. The virtual camera was configured as an 
orthographical projection (like a real camera attached with a telocentric lens) such that no 
geometry distortion was introduced; the pixel size of the camera was precisely chosen to be the 
same as the spatial resolution used for the real mark capture; the orientation of the camera was 
chosen to reflect the different twist and angle effects on mark making; and the field of depth was 
controlled to simulate the different force applied during the mark making procedure. Finally, the 
virtualmark was created by looking at each cross section of the virtual depth image along the 
direction that the virtual tool intends to move and to make marks; examining the deepest point 
along each line; and creating the depth as a function of spatial distance. Since all these process 
are done virtually and in parallel on GPU, the virtual marks can be created quickly.  
 
A graphical user interface (GUI) was also developed to integrate all these tools into a package 
such that minimum computer skills are required to operate and evaluate the techniques 
developed. This GUI was designed using Qt. The window is divided into three widgets: tip (top), 
plate (middle), and statistical comparison (bottom). The tip and plate widgets feature 3D 
representations of the file geometry on the left side. For these views, the geometry is down-
sampled by a factor of 6 to improve graphics speed and performance. Users can left click and 
drag on the geometry to translate it, and a Qt-provided trackball model allows users to intuitively 
rotate the geometry with right click and drag. The scroll wheel allows users to zoom in and out. 
Users can double-click on the realmark (or plate) view to interactively select a cross section of 
real mark data for comparison. Users can view the geometry in one of four modes by clicking the 
buttons immediately to the left of the geometry views: shaded, wireframe, textured, and height- 
mapped. Textured mode overlays the 2D texture from the Alicona onto the 3D geometry. A fifth 
viewing mode is provided for the tip widget which shows the tip geometry projected in the 
direction of tool travel; this mode helps users understand the mark generation process. 
 
The right sides of the tip and plate widgets provide plots for profile data. The plate widget 
provides the name of plate file and a box for changing the selected column. The tip widget 
provides the name of the tip file and boxes for editing the desired tip rotation for mark 
generation. Users can click the adjacent button to create a virtual mark; when the mark is 
complete, users can click on the virtual mark tab to see the view. This trim view presents the 
recommended end points from the edge detection algorithm as the left and right sides of a purple 
box and allows users to interactively change these end points. Moreover, the trim view features a 
flip button that flips the virtual mark to compensate for a plate scanned backwards. 
 
For both the tip and plate widgets, the statistics plot tab provides a view of the trimmed and de-
trended mark. De-trending is the process of fitting a first-order line to the data with linear least 
squares and then subtracting this line from the data; it is an essential preparatory step for the 
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statistical comparison. Once the user clicks the calculate button in the statistics widget, purple 
windows pop up on both statistics plots denoting the locations of the search windows. 
 
Initial experiments were based on statistically analyzing sides A and B of 6 different tools 
sampled from the 50 sequentially manufactured screwdriver tips and 34 actual toolmarks made 
by a qualified toolmark examiner using a special jig.  These real toolmarks were made at angles 
of 45°, 60°, and 85° with the horizontal (6 x 2 x 3 = 36 real marks; two 45° marks were 
unavailable at the time of the study). The tip scans were carefully cleaned to remove noise from 
the data acquisition process and assigned a coordinate system that mathematically defines angles 
and twists in a natural way.  Using the virtual tookmark generation method, virtual marks were 
made at angles with the horizontal of 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 
and 90° (6 x 2 x 13 = 156 virtual marks) and compared to scans of the real tool marks.  The 
previously developed statistical algorithm performs the comparison, comparing the similarity of 
the geometry of both marks to the similarity that would occur due to random chance.  Finally, the 
method informs the forensics examiner of the angle(s) of the best matching virtual mark, 
allowing the examiner to focus his/her mark analysis on a smaller range of angles and twists. 
 
Experimental results are very promising.  In this preliminary study, the method could distinguish 
matches from non-matches with only a couple false negatives (i.e. matches mistaken for non-
matches).  For matches, it can also generally distinguish between marks made at high and low 
angles with good prediction.The experimental data indicated that the matching angle might not 
be perfectly the same as angle as the mark was made at, but is very close. These slight 
discrepancies could be caused by the real toolmarks ostensibly being made at a particular angle 
actually being slightly different from the desired angle value due to slight deflection of the tip 
during the mark making process and/or slightly non-flat lead plate used for making the mark.  
 
In summary, the questions posed as the goal of this study, “can a manipulative “virtual” tool be 
made to generate “virtual marks” and can those marks be used for quantitative and objective 
toolmark characterization?” have been answered in the affirmative given the right conditions. 
The results of this developed method support the conclusions of traditional tool mark analysis 
based upon observation and experience, giving them a firmer statistical background. Factors 
affecting the correct identification include the quality of the marking, suitable noise cleaning 
techniques, suitable virtual mark making approach, and the suitable statistical routine. The noise 
of the raw data directly obtained from an optical profilometry cannot be too large on the edges to 
ensure the success of the developed methodologies, and thus special care shall be given to this 
step.  Moreover, this method presents a unique opportunity to improve tool mark analysis by 
saving examiners’ time and reducing the possible damage to evidence. 
 
The software package developed uses module-based strategies, making it easier to change some 
modules. The GUI was developed with Qt, and the programming language used is C++.  The 
software was designed in such a way that it can operate on mobile computers (e.g., a laptop) with 
standard hardware configurations.  A further study involves development of an all-mobile system 
for toolmark and firearm examinations is of considerable interest. The intention of making this 
software package free and open source once it matures could benefit the whole community at 
large.  
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I. Introduction 
 

I.1: Statement of the problems 
This project has sought to answer the following question:  Can a manipulative “virtual” tool be 
made to generate “virtual marks” for quantitative and objective toolmark characterization? In 
other words, can it be said that toolmarks obtained from a “virtual tool” yields characteristics that 
are unique enough to that tool (and only that tool) to enable matching of the virtual toolmark to 
actual toolmarks to allow an objective identification algorithm to be employed for identification 
purposes? Providing answers to these questions based upon quantitative techniques rather than 
subjective analysis removes uncertainties raised by the 1993 Daubert decision, which created a 
higher standard for federal courts to accept expert witness testimony. The new standard calls for 
scientific knowledge with a basis in the scientific method to be the foundation for testimony of 
expert witnesses (in this field, toolmark examiners).  Thus, development of a method of analysis 
that reduces the subjective nature of comparative evaluation and provides statistical confirmation 
of a match, with known error rates and confidence intervals, is desirable.  The scientific method 
involving observation, hypothesis formation, hypothesis testing through experimentation, and 
result analysis was followed in this study. The research sought to directly link a tool to its 
resultant tool mark in a quantifiable way, providing information concerning the manner in which 
the mark was made.  Additionally, the methodology employed allows a statistical analysis to be 
made of the nature of the match between the mark and the tool that provides probabilities and 
error rates for the best match as opposed to when other tools are substituted.  Thus, the current 
research reinforces statistical efforts involving measurement of consecutive matching striations 
in placing toolmark identification on a sound scientific footing. 
 
I.2: Literature citations and review 
In the sixteen years since the 1993 Daubert vs. State of Florida decision, increasing attacks have 
been aimed at firearm and tool mark examiners by defense attorneys via motions to exclude 
evidence based on expert testimony.  Such motions claim that the study of tool marks has no 
scientific basis, that error rates are unknown and incalculable, and that comparisons are 
subjective and prejudicial. These motions misstate the true nature of firearm and tool mark 
research in a number of ways.  The claim that scientific evidence is lacking in tool mark 
examinations ignores the numerous studies that have been conducted, especially in the area of 
firearms [Biasotti, 1959; Bonfantis and DeKinder, 1999a, 199b; Biasotti and Murdock, 1984], to 
investigate the reproducibility and durability of markings.  These studies have shown time and 
again that while matching of cartridges cannot be universally applied to all makes and models of 
guns using all types of ammunition, the characteristic markings produced are often quite durable 
and a high percentage can be successfully identified using optical microscopy, a fact supported 
by a recent report from the National Academy of Sciences [NAS Report, 2008].  While error 
rates are unknown, and that the statistical probability of different guns having identical markings 
has not been established, it must be understood that establishing error rates and probabilities in 
the area of tool marks is fundamentally different than in an area such as genetic matching 
involving DNA. When considering genetic matching, all the variables and parameters of a DNA 
strand are known and error rates can be calculated with a high degree of accuracy.  This is not 
the case in tool marks where the variables of force, angle of attack, motion of the tool, surface 
finish of the tool, past history of use, etc. are not known or cannot be determined, and the 
possibility for variation is always increasing as the population under study continues to increase 
and change. For practical purposes, this may indeed mean that realistic error rates cannot be 
completely characterized. However experiments based on sequentially manufactured tools may 
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lead to useful approximations and/or bounds, and such studies are underway [Faden et al. 2007; 
Chumbley et al., 2010].  
 
The proposition that tool marks must necessarily have a quantifiable basis is the principle upon 
which the Integrated Ballistics Imaging System (IBIS) developed and manufactured by Forensic 
Technology, Inc. for bullets and cartridge cases operates.  IBIS uses fixed lighting and an image 
capture system to obtain a standard digital image file of the bullet or cartridge case.  The contrast 
displayed in the image is reduced to a digital signal that can then be used for rapid comparisons 
to other files in a search mode.  The latest version of IBIS uses the actual surface roughness as 
measured by a confocal microscope to generate a comparison file [Bachrach, 2002].  The results 
are displayed in a manner analogous to a web search engine, where possibilities are listed in 
order with numbers associated with each possibility.  An experienced tool mark examiner must 
then review the list of possibilities to make a judgment as to whether a match does, in fact, exist.  
In instances where a match is declared, it is quite common for the match not to be the first 
possibility displayed by IBIS, but to be further down the list.  In other words, while the 
analysis/algorithm employed by FTI produces the numbers associated with each match, these 
numbers carry no clear statistical relevance or interpretation related to the quality or probability-
of-match of any given comparison [NAS Report, 2008].   
 
In recent studies researchers at Iowa State University (ISU) have developed a computer-based 
data analysis technique that allows rapid comparison of large numbers of data files of the type 
that might be produced when studying striated tool marks [Faden et al., 2007; Chumbley et al., 
2010; Baldwin et al., 2004].  In these studies sequentially manufactured tools have been used to 
produce tool marks, which are then characterized using various means to yield a data file 
consisting of quantitative measurements.  A major aim of the research has been to construct well-
defined numerical indices, based upon the information contained within the tool mark itself, that 
are useful in establishing error rates for objective tool mark matching. While this error rate may 
only be practically achievable for a particular set of experimental conditions, it should serve as a 
benchmark error rate for subsequent studies. Experiments involving comparisons of samples 
obtained from a single tool to each other, and to samples produced from other similar 
sequentially manufactured tools, show that the analysis can fairly reliably separate sample pairs 
that are known matches from the same tool from pairs obtained from different tools [Faden et al., 
2007; Chumbley et al., 2010]. Additionally, the index provides a means of calculating estimates 
of error rates within the specific setting of the tools studied.  It is interesting to note that while 
the computer algorithm developed at ISU works very well, it still falls short of the proficiency of 
an experienced tool mark examiner [Chumbley et al., 2010]. 
 
The studies cited above involve comparisons of marks produced from either sequentially made 
tools or marked bullets fired from similar guns.  In all instances the comparisons are of marks to 
marks, i.e. a connection is inferred to exist between the marked surfaces and the tool that 
produced them.  While this assumption is believed to be a valid one, in the current era of court 
challenges and newspaper reports it would seem advisable that work be undertaken to provide a 
more direct link between a tool marked surface and the tool which produced it.  This approach 
has a significant advantage in that it establishes a direct link between the mark and the suspect 
tool.  Additionally, if a connection between a specific tool or weapon can be established in 
quantifiable terms, error rates and probabilities can be established between the suspect tool and 
similar tools. 
 
The research described below outlines a program that seeks to directly link a tool to its resultant 
tool mark in a quantifiable way, providing information concerning the manner in which the mark 
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was made.  Additionally, we anticipate that the methodology employed will allow a statistical 
analysis to be made of the nature of the match between the mark and the tool that will provide 
probabilities an error rates for the best match as opposed to when other tools are substituted.  
This proposal was based on initial experiments that have already been conducted, and many 
potential problems have already been encountered and overcome. 
 
I.3: Statement of hypothesis and rationale for this research 
This study involves the development of a “virtual tool” to generate “virtual marks” for toolmark 
characterization.  In this study, the following two hypotheses were tested: 
 
Hypothesis 1: A 3D simulation tool can be generated and manipulated to create “virtual 

marks” that match with “real marks” made by the same tool under the same 
conditions (e.g. angle, twist, and force).  

 
Hypothesis 2: The virtual tool mark generation technique can be used to effectively and 

objectively characterize the tool marks. 
 
These hypotheses were tested using the procedures outlined below. 
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Figure 3(a) shows a typical row data with significant amount of bad points. Because the 
horizontally the screw driver tip is relatively flat, a 1st –order polynomial is used to approximate 
the data points, which is shown in the red curve. Figure 3(b) shows the difference between the 
measured data and the approximated result. If a threshold of 80 µm is used, the data points below 
the lower red line or above the topper red line will be treated as bad and should be eliminated. It 
can be seen that if the proper threshold is chosen, almost all the bad points can be removed.  

(a) 300th row fitting with 1st order polynomial (b) Difference between estimated and raw data 
Figure 3:Fit the data line-by-line by polynomials horizontally 

 
Similar operations are applied to the remaining good points vertically line by line. Because the 
vertically the screwdriver tip is not flat, a 9th-order polynomial was found to be appropriate to fit 
the curve. Figure 4 shows the corresponding to the plots of 2000th row. It clearly shows that the 
9th order polynomial well represents the curve, and a threshold of 25 µm is sufficient to 
eliminate most of the bad points. After this operation, more bad points are removed and the data 
is further cleaned.  
 
Figure 5(a) shows the result after removing all bad points. In this figure, removed bad points are 
depicted as black areas. This figure clearly shows that most of the bad points (spikes) in Figure 2 
are successfully removed. It should be noted that the same threshold is used for all horizontal 
lines (vertical lines), and the same order of polynomial is used for all horizontal lines (vertical 
lines). However, leaving the holes in the geometry is not desirable for future data processing. 
Next, we will explain the method used to fill in those removed points.  

(a) 300th row fitting with 9th order polynomial (b) Difference between estimated and raw data 
Figure 4:Fit the remaining good data point line-by-line by polynomials vertically 
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The second type of noise encountered is the presence of spikes in the middle of the dataset. 
Figure 11 presents two examples of this type of noise. Figure11(a)shows an extreme example of 
these spikes; Figure11(b) shows a more representative example of these spikes. All of these 
spikes show up as extremely white and bright. Therefore, it seems readily apparent that the 
source of these artifacts is saturation in the image sensor due to specular highlights on the metal 
surface. 
 
A previously addressed: two approaches have been used to reduce this type of noise. First, the tip 
scanning procedure has been radically altered to improve the quality by adopting the method 
discussed in Section II.2.2. Comparing Figures 2, representative of the screwdriver data taken 
before the new lighting procedure, and all data taken after the new lighting procedure, we can see 
that the lighting procedure has drastically reduced the noise. 
 

(a) (b) 

(c) (d) 
Figure 10: After cleaning. (a-c) Shaded view. (d) Texture-mapped view. 
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(c) Spiky noise on the edge (d) Spiky noise at the end of the tip 
Figure 11: Spike noise in the middle of the dataset. 
 
The second approach used to reduce the spike noise in the middle of the dataset is a processing 
algorithm discussed in Section II.2.1. The results of this second algorithmic noise reduction 
approach are mixed. Figure 12 presents the result after cleaning the noise shown in Figure 11(a).  
The noise is indeed dramatically reduced, but it is not completely eliminated. Clearly, the 
parameters of the algorithm could be tweaked to reduce more noise, although the hole filling size 
would have to be raised carefully to avoid introducing too much interpolated data. However, the 
data captured under the new lighting technique could be further improved to minimize the 
influence of this type of noise. For such scans, we typically rescan those tips before further 
analysis. Figure 13 shows the high-quality results after noise cleaning with a better quality scan. 
The data is so clear that the few remaining should have an insignificant effect on the statistical 
matching algorithm. Therefore, all of the data used for this research was taken with the new 
lighting approach to obtain high quality scans to start with. 
 

 
Figure 12: Result after algorithmic cleaning for example show in Fig. 11(a). 

 
Figure 13: Result after algorithmic cleaning for example show in Fig. 11(b) 
 
In summary, the current cleaning techniques proved largely successful at mitigating significant 
noise. The remaining few small spikes should not have a significant impact on the results. 
 
II.2.4: Mark plate noise cleaning 
Mark plate (real mark) noise cleaning is quite easy comparing with the tip scan because plates 
are rather flat and the scanning quality is usually much higher. Figure 14shows examples of 
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2. Find the center of coordinates. The points identified in the previous step are averaged to 
compute the geometric centroid of the edge, v  [x , y , z ]T . The translation matrix to this 
point, MT , shown in below, is recorded for later. 

 M
T


1 0 0 x
0 1 0  y

0 0 1 z
0 0 0 1



















.  (1.3) 

3. Determine the direction of the y axis. In this step, a line is fit to the previously identified 
edge points using linear regression. The result is a y axis vector, which is normalized to 
unit length and saved for later. 

4. Determine the direction of the x axis. Figure 16 illustrates the derivation of the x axis 
direction. During scanning by the IFM, the tip is placed in a special measurement jig 
shown in Figure 16. This consists of an adjustable knob with a hole in it for the 
screwdriver tip shaft. The angle of rotation is labeled on the main body of the jig, and this 
body fits snugly against a ledge on the IFM stage during measurement. For all of the tip 
data, the tip angle used for measurement was 45°. As shown in Figure 18(c), the IFM 
defines its z axis as straight up into the detector; therefore, if the measurement jig is snug 
against the ledge, the IFM z axis will be coplanar with the screwdriver shaft. When this is 
satisfied (which it is for the tip scans used in this research), the x axis can be computed 
by rotating the vector [0 0 1] T through a 45° angle about the direction of the IFM y axis 
(that is, [0 1 0]T ) and then negating it. 

5. Determine the direction of the z axis. The z vector is computed as the normalized cross 
product of the x axis and the y axis. 

6. Ensure orthonormality. Because of the cross product, the z vector is guaranteed to be 
normal to the xy plane. However, the x and y vectors are not guaranteed to be normal to 
each other. In particular, the edge of the screwdriver may not be exactly perpendicular to 
the shaft due to wear and the limitations on the accuracy of the manufacturing process. In 
this case, it is assumed that the screwdriver marking motion will be more constrained by 
the edge of the screwdriver dragging along the plate than the direction of the shaft in the 
person’s hand. Therefore, the x axis direction is corrected to be normal to the y axis 
direction by re-computing it as the normalized cross product of the y axis and the z axis. 

7. Compute the basis change matrix. The basis change matrix MB is constructed as shown in 
Eq. (1.4). Here, [xxxyxz]

T, [yxyyyz]
T, and [zxzyzz]

T are the x, y, and z axis vectors 
computed above, respectively. 

 M
B


x
x

y
x

z
x

0

x
y

y
y

z
y

0

x
z

y
z

z
z

0

0 0 0 1





















.  (1.4) 

8. Compute the coordinate system matrix. The coordinate system MC is computed according 
to the following equation 

 M
C
 ( M

B
)1 M

T
.  (1.5) 

Note that MB must be inverted so that MC converts coordinates from the IFM coordinate 
system to the tip coordinate system rather than the reverse. 
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Since the data samples needed are one-dimensional, the depth camera is created as single 
column. A two-dimensional depth camera would simply record extra scene background points 
that would have to be filtered out. The number of pixels h needed to sample the tip geometry at 
the desired resolution δ is computed according to Equation (1.8), where y  is the height 

computed from the bounding box in Step 2 of the overall procedure above. 

 h  floor
y








 1.  (1.8) 

Equation (1.9) readjusts y so that δ is assured to be the desired value. 

 y  h.  (1.9) 

To create this special one-dimensional depth buffer of the correct size without interfering with 
the on-screen window, an OpenGL frame buffer object (FBO) is used. A frame buffer object is 
like a bundle to collect various images for OpenGL to draw into instead of the standard window. 
The FBO in this research contained only one image: the 1 × h depth buffer for the depth camera. 
Originally, the depth buffer was created as a renderbuffer object; however, ATI graphics cards 
would not accept an FBO with only a renderbuffer in it. Therefore, the depth camera had to be a 
2D texture object. 
 
The maximum allowable height of the depth camera texture in the FBO depends upon the 
capability of the computer’s GPU. For a 10x resolution data set, δ = 0.803568 μm, which causes 
h to be about 8000 when the tip is at the angles (0, 0, 0). Many typical graphics cards cannot 
handle a texture this tall. Therefore, the flattened screwdriver scene is automatically divided into 
equal vertical partitions as needed to satisfy the demands of the graphics card. The depth camera 
then takes an image for each one of these partitions, and these images are later stitched together 
into a whole mark. Equation 3.8 is the equation used to compute the height of the depth buffer 
for the case of multiple partitions, where n is the number of partitions and ymax and ymin are the 
extreme values of the collapsed bounding box in Step 2. The y parameter is still computed with 

Equation (1.10), but instead of being equivalent to ymax − ymin as shown in Figure 24, it is now 
only equal to the height of the depth camera (which only covers afraction of the mark) in μm. 

 h  floor
y

max
 y

min

n







1. (1.10) 

Finally, although the FBO with the depth texture is the major component of the depth camera, 
the OpenGL viewport and projection matrix need to be correctly set. The viewport (the size of 
scene on the computer screen) is set to 1 × h. The orthographic projection matrix is set such that 
the visualized part of the scene is y μm tall. In the first scene partition, the lower clip plane is 

set to ymin and the upper clip plane to ymin+ y . For subsequent partitions, y is added to these 

clip planes to advance the part of the scene that the depth camera captures. 
 
II.6.2: Drawing the tip 
As mentioned above, the average digitized tip in this research contains slightly more than 
9000×1000 = 9 million points. For OpenGL to draw these points, it must transfer at least 
threefloats (floating point numbers) representing x, y, and z to the graphics card for each 
vertex.This amount of information takes up 

  
4

bytes

float







3
floats

vertex







9 106 vertices  1kB

1024bytes







1MB

1024 kB







; 100 MB  
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of memory. There is a limit on the rate of transfer from the CPU memory to the GPU, so in the 
ideal case, we would store this vertex data in a vertex buffer object (VBO) on the GPU to avoid 
transferring it each time the mark is drawn. However, the GPU only possesses a certain amount 
of RAM. While higher-end GPUs have gigabytes of RAM, many existing consumer- level GPUs 
do not. Therefore, we decided to conservatively limit the video RAM usage to 128 MB, a 
minimum system recommendation for modern video games. With approximately 60 MB of the 
video RAM already devoted to showing down-sampled 3D representations of the tip and mark in 
the user interface, the mark vertex data needed to be streamed to the graphics card rather than 
stored. 
 
At first, the OpenGL glVertex command was used for streaming. However, most 
implementations of OpenGL could not handle this much streaming data and reserved several 
gigabytes of CPU RAM as a buffer for the data during streaming. This inhibited operations of 
other programs during mark generation. The mark-making process also ran slowly. Therefore, 
we created a special object called a StreamBuffer to stream the vertices to the GPU instead of 
OpenGL. Therefore, we created a special object called a StreamBuffer to stream the vertices to 
the GPU instead of OpenGL. The StreamBuffer allocates a pointer to 30 MB of CPU RAM and 
creates a 30 MB VBO on the GPU. The mark generation program hands its vertices to the 
StreamBuffer object, which stores them in the CPU pointer. When the CPU pointer becomes full, 
the StreamBuffer copies them to the VBO and instructs OpenGL to draw them. The data is 
initially stored in the CPU memory as a backup for the video RAM; the process of editing video 
RAM can sometimes fail and need to be repeated. A dynamically allocated CPU array was used 
to avoid the function overhead associated with vector objects. For normal operations, this 
function overhead is not noticeable, but for the intense streaming operation, it slowed mark 
generation by several seconds overall on a desktop PC. 
 
Moreover, in order to generate the virtual mark at the desired resolution δ, we will need to 
interpolate between the data points. OpenGL will automatically perform this interpolation if the 
data is appropriately formatted in a triangle mesh. Two problems arise from this requirement for 
a triangle mesh. First, we can make a simple meshing algorithm to determine the proper 
relationship between the vertices. If each vertex is assigned a unique number, then we can store 
the results of meshing as a vector of integers and re-use the solution each time the tip is drawn. 
However, each vertex number needs to be a full-sized integer. A short integer can only hold at 
most the value 65535, not enough to count all 9 million vertices. Therefore, assuming that each 
vertex participates in only three triangles, the required index array would take up roughly 100 
MB. Again, this is too much to store on the GPU. Since meshing is a relatively quick operation 
while transferring data is relatively slow, the mark generator simply re-meshes the data each 
time. 
 
Another bigger problem arises from the way in which OpenGL samples the geometry for the 
depth camera. This sampling process is known as rasterization. In the interpolated mode, 
OpenGL draws only those fragments which lie inside of the established triangles in the mesh 
[Segal and Akeley, 2006]. Since the meshed geometry is collapsed into an infinitely thin line 
using the squish matrix, none of the points reside inside of a triangle. Therefore, the depth 
camera cannot “see” these points and record them. Therefore, the projected edge needs to be 
extruded to a finite thickness in the camera’s field of view. To do this, we adopt a meshing 
algorithm that meshes between two instances of the tip geometry as shown in Figure 25. For 
each rectangle of four points in the tip data (labeled 0, 1, 2, and 3 in the diagram), the algorithm 
forms triangles on six surfaces between a left and a right copy of the points: bottom, top, left, 
right, top-left to bottom-right diagonal, and top-right to bottom-left diagonal. Triangles are not 
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et al., 2010], so it will not be described in detail here.  Briefly, the algorithm determines 
matching along one-dimensional profilometer data traces (z vs. x) where the values of z are 
reported at equal increments of distance along the trace and the traces are taken as nearly 
perpendicular to the striations as possible.  Such will be the case for the data available from the 
VT and VM of this study.   
 
The algorithm first goes through an Optimization step to identify a region of best agreement in 
each of the two data sets, as shown in Figure 28.  The R-value of this region is determined 
[Faden et al. 2007]. The algorithm then conducts a second step in the comparison process called 
Validation, where corresponding windows of equal size are selected at randomly chosen, but 
common distances from the previously identified regions of best fit. The assumption behind the 
Validation step is that if a match truly does exist, correlations between these shifted window 
pairs will also be reasonably large because they will correspond to common sections of the tool 
surface.  In other words, if a match exists at one point along the scan length (high R-value), there 
should be fairly large correlations between corresponding pairs of windows along their entire 
length.  However, if a high R-value is found between the comparison windows of two nonmatch 
samples simply by accident, there is no reason to believe that the accidental match will hold up at 
other points along the scan length.  In this case rigid-shift pairs of windows will likely not result 
in especially large correlation values.    
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Figure 28:  Comparison of two marks showing best fit (solid rectangle) and Validation windows 
(dotted rectangles). 
 
The correlation values computed from these segment-pairs can be judged to be “large” or 
“small” only if a baseline can be established for each of the sample comparisons.  This is 
achieved by identifying a second set of paired windows (i.e. data segments), again randomly 
selected along the length of each trace, but in this case, without the constraint that they represent 
equal rigid-shifts from their respective regions of best fit, Figure 29(b).  
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Pixel Index

Pixel Index

(a)

(b)  
Figure 29: (a) Comparison pair showing a true match. Best region of fit shown in solid 
rectangle. Note the similarity of the regions within the two possible sets of validation windows 
(dashed and dotted rectangles).  (b) Validation windows (dashed, dotted, and dot-and-dash 
rectangles) selected at random for the comparison pair shown in (a) to establish a baseline value 
 
The Validation step concludes with a comparison of the two sets of correlation values just 
described, one set from windows of common random rigid-shifts from their respective regions of 
best agreement, and one set from the independently selected windows.  If the assumption of 
similarity between corresponding points for a match is true, the correlation values of the first set 
of windows should tend to be larger than those in the second.  In other words, the rigid-shift 
window pairs should result in higher correlation values than the independently selected, totally 
random pairs.  In the case of a nonmatch, since the identification of a region of best agreement is 
simply a random event and there truly is no similarity between corresponding points along the 
trace, the correlations in the two comparison sets should be very similar. Using this statistical 
algorithm we previously developed had shown that tool marks can be quantified and error rates 
established [Chumbley et al., 2010].  
 
II.8: Software graphical user interface (GUI) design 
Figure 30 presents the main window of the graphical user interface (GUI) for the virtual mark 
software. This GUI was designed using Qt. The window is divided into three widgets: tip (top), 
plate (middle), and statistical comparison (bottom). The tip and plate widgets feature 3D 
representations of the file geometry on the left side. For these views, the geometry is down-
sampled by a factor of 6 to improve graphics speed and performance. Users can left click and 
drag on the geometry to translate it, and a Qt-provided trackball model allows users to intuitively 
rotate the geometry with right click and drag. The scroll wheel allows users to zoom in and out. 
Users can double-click on the plate view to interactively select a column of plate data for 
comparison. This selected column appears in the plate view as a red plane as shown in Figure 30. 
Users can view the geometry in one of four modes by clicking the buttons immediately to the left 
of the geometry views: shaded, wireframe, textured, and height- mapped. Textured mode 
overlays the 2D texture from the Alicona onto the 3D geometry. A fifth viewing mode is 
provided for the tip widget which shows the tip geometry projected in the direction of tool travel; 
this mode helps users understand the mark generation process. 
 
The right sides of the tip and plate widgets provide plots for profile data. The plate widget 
provides the name of plate file and a box for changing the selected column. The tip widget 
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III. Results 
 
This study was to test the following two hypotheses: 
 
Hypothesis 1: A 3D simulation tool can be generated and manipulated to create “virtual 

marks” that match with “real marks” made by the same tool under the same 
conditions (e.g. angle, twist, and force).  

 
Hypothesis 2: The virtual tool mark generation technique can be used to effectively and 

objectively characterize the tool marks. 
 
The first and most fundamental assumption that all tool marks are unique had been supported by 
the prior study conducted by Chumbley et al. [2010]. This research was to use the virtual tool 
mark generation technique to further test this assumption by a comparison of real marks made by 
different screwdriver tips at the angles of 45, 60 and 85 degrees with respect to horizontal (6 x 2 
x 3 = 36 real marks; two 45° marks were unavailable at the time of the study); and of virtual 
marks made by the virtual screwdriver tool at every 5 degrees starting from 30 degrees with 
respect to horizontal (30, 35, 40, …, 85, 90 degrees; 6 x 2 x 13 = 156 virtual marks).  
 
Figures 32, 33, and 34 present sample known-match comparisons.  “Known match” for this 
study was defined as using the same tip side to generate both real and virtual marks.  Figures 30, 
35, and 36 present sample known non-match comparisons; known non-matches for this study 
included marks made by different screwdrivers and different sides of the same screwdrivers.  
Different sides of the same tip were included because the work of Chumbley et al. [2010] 
supports the conclusion that different sides have unique marks.  The known non-matches for this 
study also included both non-matches and matches where the virtual mark was flipped relative to 
the scan direction of the real mark; these were included to ensure that the algorithm was not 
matching based upon identical class and/or subclass characteristics of the marks. In these figures, 
the red upper mark is a virtual mark, and the blue lower mark is a cross-section from a real mark.   
 
The T1 statistic values from the known matches in the study are shown in Figure 37 as a function 
of angular comparison.  The data is plotted as box plots, the boxes indicating where 50% of the 
data falls with the spread of the outlying 25% at each end of the distribution shown as dashed 
lines.  As stated previously, when using a T1 statistic a value relatively close to 0 indicates that 
there is essentially no evidence in the data to support a relationship between markings. Figure 37 
shows that for pairs made from the same screwdriver tip edge, the virtual and real marks produce 
the largest T1 values when they were made from an angle within 5 degrees. The T1 values drop 
to 0 close to zero if the angle made the virtual marks and the angle made the real mark are far 
apart. When the angles are at the matching angles, the T1 values are mostly larger than 2.5, 
except a few outliers with T1 value below 2.5 where the match cases become non-matches.  
 
In comparison, for known non-matches (Figure 38), the majority of the index T1 values 
produced by the algorithm are near the 0 value (within ±2.5), indicating that there is essentially 
no evidence in the data to support a relationship between markings.  
 
Our preliminary studies found that for non-match cases and T1 values less than -2.5, most of 
them have similar characteristics as shown in Figure 36. There was a large unusual structure at 
the end of the virtual mark, making the Optimization step result in an incorrect “best fit” 
location. We are still investigating the cause of these outliers and hopefully develop an 
automated routine to handle the issue like the one shown in Figure 36.  
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We also noticed that the higher the angle, the larger the variance of the T1 values for matches, 
whilst no obvious disparities for non-matches. This might be caused by the fact that it is more 
difficult to make the higher real marks by an examiner. Further study will also be conducted to 
determine the causes of the differences between high and low angle marks for matching cases. 
 
Combining all preliminary studies together, two hypotheses were clearly supported, although 
there are minor issues worth further investigation. 
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IV. Conclusions 
IV.1: Discussion of findings 
This project has sought to answer the following question:  Can a manipulative “virtual” tool be 
made to generate “virtual marks” for quantitative and objective toolmark characterization? In 
other words, can it be said that toolmarks obtained from a “virtual tool” yields characteristics that 
are unique enough to that tool (and only that tool) to enable matching of the virtual toolmark to 
actual toolmarks to allow an objective identification algorithm to be employed for identification 
purposes? This question has definitely been answered in the affirmative for the population of 
tools examined.  The ability to discriminate between markings is based on a number of factors, 
including: 
 
1. The quality of the marking itself. 
2. The ability to quantify the marking that exists. 
3. The ability to truthfully generate 3D digital representation of the tools. 
4. The ability to manage noise from an optical profilometer. 
5. The ability to correctly generate the virtual markings from the virtual tool.  
6. The manner in which the objective, automated routine is designed to operate. 
 
The importance of having high quality markings and truthful 3D digital representation of tooltips 
is supported by the objective results of the study. If high quality markings do exist and the virtual 
markings are correctly produced from truthful 3D virtual tools, using suitable methods to 
quantify the results and incorporating contextual information into the analysis of the data greatly 
increase the ability of an automated routine to separate marks made from ostensibly identical 
tools.  
 
The virtual toolmark characterization technique heavily relies on truthfully scanning screwdriver 
tips. Yet, optically scanning 3D screwdriver tips with high quality turned out to be a non-trivial 
task due to high angles as well as surface specularity. Special care should be given to this step to 
ensure “sufficient” quality 3D data obtained before using any software routines.  
 
IV.2: Implications for policy and practice 
Given that the tools examined in this study should have been as identical as possible to one 
another implies that unique markers do exist for every tool manufactured by this company using 
the tools currently employed for their manufacture.  The question then becomes, of the factors 
listed above, what elements must be addressed to yield a fully automated, objective result?  If a 
poor quality marking exists an unambiguous determination may be impossible.  The level to 
which the toolmark(s) must be examined then becomes a matter of question and this level was 
not determined in this study.  Certainly the level used in this study would appear sufficient if 
contextual information is included. Finally, the exact manner in which the algorithm operates, 
and the manner in which data is acquired, becomes a critical question.  
 
IV.3: Implications for further research 
Testing of the algorithm on other types of tool marks would be appropriate to determine the 
applicability of the program to other marks. Currently, the algorithm is set up to evaluate striated 
marks; whether this can be generalized to other marks is unknown. 
 
Another area of research is the question concerning the cut-off values used to qualify a 
comparison as either a match or nonmatch.  The T1 values identified for the angles tested were 
seen to vary.  This is most likely related to the quality of the marking.  Some quantitative 
measure of mark quality could possibly be developed that would give an indication of when the 
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results of a comparison are likely to be valid.  Related to this, a study concerning the variance in 
data would be of value. This would involve having multiple persons acquire data from the same 
samples then employ the algorithm to see how the results compare between operators. This study 
would yield valuable statistical information concerning algorithm performance and robustness. 
 
Unlike a stylus profilometer that only generates one trace per scan, the optical profilometer 
usually provides hundreds even thousands of traces per scan, making the size of data enormously 
larger. For example, the size of each 3D scan used in this research is approximately 100 MB. 
How to manage and store such 3D metadata would be a vital issue to handle. Therefore, 
developing compression techniques (similar to 2D image compression techniques) for 3D data 
would be of significant interest.   
 
Finally, the software package developed uses module-based strategies, making it easier to change 
some modules. The GUI was developed with Qt, and the programming language used was C++.  
The software was developed and primarily tested on Ubuntu 12.04 LTS. (Ubuntu is a very 
popular Linux flavor.)  It was also tested on Windows XP, Windows 7, and Mac OS X Snow 
Leopard.  Further testing on Mac OS is currently underway. The software was designed in such a 
way that it can operate on mobile computers (e.g., a laptop) with standard hardware 
configurations.  A further study involving development of an all-mobile system for toolmark and 
firearm examinations is of considerable interest. The intention of making this software package 
free and open source once it matures could benefit the whole community at large.  
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